Example of a Higher Level, Hardware-based FMEA Machine/Process: Onboard compressed air system Subject: 1.2 Compressor subsystem Description: Equipment used to compress the intake air to 100 psig (including the compressor and its control loop, the discharge relief valve, and associated piping) Next higher level: 1. Compression system | | Effects | | | | | | Recommenda- | |--|---|--------------------------|---|--|--|--|--| | Failure Mode | Local | Higher Level | End | Causes | Indications | Safeguards | tions/Remarks | | • | • | • | • | • | • | • | • | | • | • | • | • | • | • | • | | | • | • | | • | • | • | • | • | | B Fails to
provide air at
100 psig | No air pressure
and the
compressor not
operating | No air flow/
pressure | Interruption of the systems supported by compressed air | Compressor control loop – no start signal when the system pressure is low Compressor – fails to operate Relief valve – spuriously opens Piping – leak/ rupture | Low pressure
indicated on the
air receiver
pressure gauge | Rapid detection
because of quick
interruption of the
supported
systems | Consider a redundant compressor (diesel powered) with separate controls Calibrate sensors annually Replace the relief valve annually | | • | • | • | • | • | • | • | | | • | • | • | • | • | • | • | | | • | • | | • | • | • | • | |