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Abstract

Failure mode and effects analysis (FMEA) is one of the well-known analysis methods
having an established position in the traditional reliability analysis. The purpose of FMEA
is to identify possible failure modes of the system components, evaluate their influences on
system behaviour and propose proper countermeasures to suppress these effects. The
generic nature of FMEA has enabled its wide use in various branches of industry reaching
from business management to the design of spaceships. The popularity and diverse use of
the analysis method has led to multiple interpretations, practices and standards present-
ing the same analysis method.

FMEA is well understood at the systems and hardware levels, where the potential failure
modes usually are known and the task is to analyse their effects on system behaviour.
Nowadays, more and more system functions are realised on software level, which has
aroused the urge to apply the FMEA methodology also on software based systems. Soft-
ware failure modes generally are unknown—*“software modules do not fail, they only
display incorrect behaviour”—and depend on dynamic behaviour of the application. These
facts set special requirements on the FMEA of software based systems and make it diffi-
cult to realise.

In this report the failure mode and effects analysis is studied for the use of reliability
analysis of software-based systems. More precisely, the target system of FMEA is defined
to be a safety-critical software-based automation application in a nuclear power plant,
implemented on an industrial automation system platform. Through a literature study the
report tries to clarify the intriguing questions related to the practical use of software
failure mode and effects analysis.

The study is a part of the research project “Programmable Automation System Safety
Integrity assessment (PASSI)”, belonging to the Finnish Nuclear Safety Research Pro-
gramme (FINNUS, 1999-2002). In the project various safety assessment methods and
tools for software-based systems are developed and evaluated. The project is financed
together by the Radiation and Nuclear Safety Authority (STUK), the Ministry of Trade
and Industry (KTM) and the Technical Research Centre of Finland (VTT).
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Jarjestelmien vikaantumis- ja vaikutusanalyysi. STUK-YTO-TR 190. Helsinki 2002. 35 s. + liitteet 2 s.

Avainsanat: turvallisuus, turvallisuusanalyysi, luotettavuusanalyysi, automaatio, ohjelmoitavat
jarjestelmat, reaktorin suojausjirjestelmét, reaktoriturvallisuus, vika- ja vaikutusanalyysi

Tiivistelma

Vika- ja vaikutusanalyysi (VVA) on tunnettu analyysimenetelmé4, jolla on vakiintunut
asema perinteisissi luotettavuusanalyyseissd. VVA:n tavoitteena on tunnistaa jarjestel-
mén komponennttien mahdolliset vikantumistavat, arvioida niiden vaikutuksia jéarjestel-
mén kéyttdytymiseen ja ehdottaa sopivia vastatoimenpiteitd haitallisten vaikutusten
estdmiseksi. VVA:n yleispéteva luonne on mahdollistanut sen soveltamiseen mitd moni-
naisimpiin kohteisiin ulottuen liiketoiminnan hallinnasta avaruusalusten suunniteluun.
Menetelmén laaja suosio ja erilaiset kidyttotavat ovat johtaneet useisiin erilaisiin menette-
lya koskeviin tulkintoihin, kdytédntoihin ja standardien syntyyn.

VVA hallitaan hyvin jirjestelma- ja laitetasoilla, joilla mahdolliset vikaantumistavat
yleensi tunnetaan ja tehtdvini on analysoida niiden vaikutuksia jarjestelméin kayttayty-
miseen. Nykyédédn yhé suurempi osa jéarjestelmien toiminnoista toteutetaan ohjelmistota-
solla, mik& on herdttinyt halun soveltaa VVA metodologiaa myos ohjelmoitaviin jarjestel-
miin. Ohjelmistojen vikaantumistapoja ei yleensi tunneta — “ohjelmistot eivit vikaannu,
ne vain voivat kayttaytya ennakoimattomalla tavalla” — ja ne riippuvat sovelluksen
dynaamisesta kdyttdytymisesté.

Téassé raportissa on selvitelty vika- ja vaikutusanalyysin soveltamista ohjelmoitaviin
jarjestelmiin. Tarkemmin sanottuna analyysin kohteena on ajateltu olevan teolliseen
automaatiojarjestelmiin implementoitu ydinvoimalaitoksen turvallisuuskriittinen
automaatiosovellus. Lihinn4 kirjallisuuden perusteella on yritetty selvittdd ohjelmoita-
vaan tekniikkaan liittyvia vika- ja vaiktusanalyysin erityisongelmia.

Tutkimus on ollut osa Suomen kansalliseen ydinturvallisuustutkimusohjelmaan
(FINNUS 1999-2002) kuuluuvaa "Ohjelmoitavan automaation turvallisuuden arviointi
(PASSI)”-projektia. Projektissa on kehitetty ja arvioitu erilaisia ohjelmoitavien jarjestel-
mien turvallisuuden arviointimenetelmié. Projektia ovat rahoittaneet yhdessa Séateilytur-
vakeskus (STUK), Kauppa- ja teollisuusministerio (KTM) ja Valtion teknillinen tutkimus-
keskus (VTT).
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Definitions

Terms

Analysis approach

Variations in design complexity and available
data will generally dictate the analysis ap-
proach to be used. There are two primary
approaches for the FMECA. One is the hard-
ware approach that lists individual hardware
items and analyzes their possible failure
modes. The other is the functional approach
that recognizes that every item is designed to
perform a number of outputs. The outputs are
listed and their failures analyzed. For more
complex systems, a combination of the func-
tional and hardware approaches may be con-
sidered.

Block diagrams

Block diagrams that illustrate the operation,
interrelationships, and interdependencies of
the functions of a system are required to show
the sequence and the series dependence or
independence of functions and operations.
Block diagrams may be constructed in con-
junction with, or after defining the system and
shall present the system breakdown of its
major functions. More than one block diagram
is sometimes required to represent alternative
modes of operation, depending upon the defi-
nition established for the system.

Compensating provision
Actions that are available or can be taken by
an operator to negate or mitigate the effect of
a failure on a system.

Contractor
A private sector enterprise engaged to provide
services or products within agreed limits spec-
ified by a procuring activity.

Corrective action
A documented design, process, procedure, or
materials change implemented and validated
to correct the cause of failure or design defi-
ciency.

Criticality
A relative measure of the consequences of a
failure mode and its frequency of occurrences.

Criticality analysis (CA)
A procedure by which each potential failure
mode is ranked according to the combined
influence of severity and probability of occur-
rence.

Damage effects
The result(s) or consequence(s) a damage
mode has upon the operation, function, or
status of a system or any component thereof.
Damage effects are classified as primary dam-
age effects and secondary damage effects.

Damage mode
The manner by which damage is observed.
Generally describes the way the damage oc-
curs.
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Damage mode and effects analysis (DMEA)
The analysis of a system or equipment con-
ducted to determine—the extent of damage
sustained from given levels of hostile damage
mechanisms and the effects of such damage
modes on the continued controlled operation—
and mission completion capabilities of the sys-
tem or equipment.

Design data and drawings
Design data and drawings identify each item
and the item configuration that perform each
of the system functions. System design data
and drawings will usually describe the sys-
tem’s internal and interface functions begin-
ning at system level and progressing to the
lowest indenture level of the system. Design
data will usually include either functional
block diagrams or schematics that will facili-
tate construction of reliability block diagrams.

Detection
Detection is the probability of the failure being
detected before the impact of the effect is
realized.

Detection mechanism
The means or method by which a failure can
be discovered by an operator under normal
system operation or can be discovered by the
maintenance crew by some diagnostic action.

Environments

The conditions, circumstances, influences,
stresses and combinations thereof, surround-
ing and affecting systems or equipment during
storage, handling, transportation, testing, in-
stallation, and use in standby status and mis-

sion operation.

Failure
Departure of a system from its required be-
haviour; failures are problems that users or
customers see.

Failure cause
The physical or chemical processes, design
defects, part misapplication, quality defects,
part misapplication, or other processes which
are the basic reason for failure or which initi-
ate the physical process by which deteriora-
tion proceeds to failure.

Failure definition
This is a general statement of what consti-
tutes a failure of the item in terms of perform-
ance parameters and allowable limits for each
specified output.

Failure effect
The consequence(s) a failure mode has on the
operation, function, or status of an item. Fail-
ure effects are classified as local effect, next
higher level, and end effect.

Failure mode
The manner by which a failure is observed.
Generally describes the way the failure occurs
and its impact on equipment operation.

Failure mode and effects analysis (FMEA)
A procedure by which each potential failure
mode in a system is analyzed to determine the
results or effects thereof on the system and to
classify each potential failure mode according
to its severity.

FMECA—Maintainability information
A procedure by which each potential failure is
analyzed to determine how the failure is de-
tected and the actions to be taken to repair the
failure.

FMECA planning

Planning the FMECA work involves the con-
tractor’s procedures for implementing their
specified requirements. Planning should in-
clude updating to reflect design changes and
analysis results. Worksheet formats, ground
rules, assumptions, identification of the level
of analysis, failure definitions, and identifica-
tion of coincident use of the FMECA by the
contractor and other organizational elements
should also be considered.



STUK-YTO-TR 190

Functional approach
The functional approach is normally used
when hardware items cannot be uniquely
identified or when system complexity requires
analysis from the top down.

Functional block diagrams
Functional block diagrams illustrate the oper-
ation and interrelationships between function-
al entities of a system as defined in engineer-
ing data and schematics.

Ground rules and assumptions

The ground rules identify the FMECA ap-
proach (e.g., hardware, functional or combina-
tion), the lowest level to be analyzed, and
include statements of what might constitute a
failure in terms of performance criteria. Every
effort should be made to identify and record
all ground rules and analysis assumptions
prior to initiation of the analysis; however,
ground rules and analysis assumptions may
be adjusted as requirements change.

Hardware approach

The hardware approach is normally used when
hardware items can be uniquely identified
from schematics, drawings, and other engi-
neering and design data. This approach is
recommended for use in a part level up ap-
proach often referred to as the bottom-up
approach.

Indenture levels
The item levels which, identify or describe
relative complexity of assembly or function.
The levels progress from the more complex
(system) to the simpler (part) divisions.

Initial indenture level
The level of the total, overall item which is the
subject of the FMECA.

Other indenture levels
The succeeding indenture levels (second, third,
fourth, etc) which represent an orderly pro-
gression to the simpler division of the item.

Interfaces
The systems, external to the system being
analyzed, which provide a common boundary
or service and are necessary for the system to
perform its mission in an undegraded mode;
for example, systems that supply power, cool-
ing, heating, air services, or input signals.

Level of analysis
The level of analysis applies to the system
hardware or functional level at which failures
are postulated. In other words, how the system
being analyzed is segregated (e.g., a section of
the system, component, sub-component, etc.).

Occurrence
Rating scale that shows the probability or
frequency of the failure.

Reliability block diagrams
Reliability block diagrams define the series
dependence, or independence, of all functions
of a system or functional group for each life-
cycle event.

Risk Priority Number (RPN)
The risk priority number is usually calculated
as the product of the severity, occurrence, and
detection.

Severity
The consequences of a failure as a result of a
particular failure mode. Severity considers the
worst potential consequence of a failure, deter-
mined by the degree of injury, property dam-
age, or system damage that could ultimately
occur.

Single failure point
The failure of an item that would result in
failure of the system and is not compensated
for by redundancy or alternative operational
procedure.

Threat mechanism
The means or methods which are embodied or
employed as an element of a man-made hostile
environment to produce damage effects on a
system and its components.
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Trade-off study reports

These should
marginal and state—of-the—art design and

reports identify areas of
explain any design compromises and operating
restraints agreed upon. This information will
aid in determining the possible and most
probable failure modes and causes in the
system.

Undetectable failure

A postulated failure mode in the FMEA for
which there is no failure detection method by
which the operator is made aware of the

failure.

Abbreviations

ACE Abnormal Condition or Event

AIAG Automotive Industry Action Group

BDA Bi-directional Analysis

CCA Cause-Consequence Analysis

CHA Component Hazard Analysis

COTS Commercial Off-the-Shelf

DFMEA  Design Failure Modes and Effects
Analysis

DCD Data Context Diagram

DFD Data Flow Diagram

ETA Event Tree Analysis

FMEA Failure Modes and Effects Analysis

FMECA  Failure Modes, Effects, and Criticality
Analysis

FPA Function Point Analysis

FPTN Failure Propagation and Transforma-
tion Notation

FSE Functions, Systems and Equipment

FTA Fault Tree Analysis

HA

HAZOP

IEC

IEEE

ISO

MOD

O&SHA

PHA

PHL

RCA

RPN

SAD

SAE

SCA

SDD

SFMEA

SFMECA

SFTA

SHA

SRS

SSCA

SSP

SSPP

SSSP

SwHA

ZNA

Hazard Analysis
Hazard and Operability Analysis

International Electrotechnical Com-
mission

Institute of Electronic and Electrical
Engineers

International Standards Organisation
Ministry of Defence (UK)

Operating and Support Hazard
Analysis

Preliminary Hazard Analysis
Preliminary Hazard List

Root Cause Analysis

Risk Priority Number

Software Architecture Description
Society of Automotive Engineers
Sneak-Circuit Analysis

Software Design Description

Software Failure Modes and Effects
Analysis (SW FMEA)

Software Failure Modes, Effects, and
Criticality Analysis (SW FMECA)

Software Fault Tree Analysis
Software Hazard Analysis
Software Requirements Specification

Software Sneak Circuit Analysis
(SSCA)

Software Safety Plan

System Safety Program Plan
System Software Safety Process
Software Hazard Analysis

Zonal Hazard Analysis
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1 Introduction

1.1 Overview

A failure mode and effects analysis (FMEA) can be
described as a systematic way of identifying fail-
ure modes of a system, item or function, and eval-
uating the effects of the failure modes on the high-
er level. The objective is to determine the causes
for the failure modes and what could be done to
eliminate or reduce the chance of failure. A bot-
tom-up technique such as FMEA is an effective
way to identify component failures or system mal-
functions, and to document the system under con-
sideration.

The FMEA discipline was originally developed
in the United States Military. Military procedure
MIL-P-1629, titled procedures for performing a
failure mode, effects and criticality analysis, is
dated on November 9%, 1949. The method was
used as a reliability evaluation technique to deter-
mine the effect of system and equipment failures.
Failures were classified according to their impact
on the military mission success and personnel/
equipment safety. The concept that personnel and
equipment are interchangeable does not apply for
example in the modern manufacturing context of
producing consumer goods and therefore the man-
ufacturers in different areas of industries have
established new sets of priorities, guidelines and
standards of their own. However, military proce-
dure MIL-P-1629 has functioned as a model for
latter military standards MIL-STD-1629 and MIL-
STD-1629A, which illustrate the most widely used
FMEA procedures.

Outside the military the formal application of
FMEA was first adopted to the aerospace industry,
where FMEA was already used during the Apollo
missions in the 1960’s. In the early 1980’s, United
States automotive companies began to formally
incorporate FMEA into their product development
process. A task force representing Chrysler Corpo-
ration, Ford Motor Company and General Motors

Corporation developed QS 9000 standard in an
effort to standardise supplier quality systems.
QS 9000 is the automotive analogy to better
known standard ISO 9000. QS 9000 compliant au-
tomotive suppliers must utilise FMEA in the ad-
vanced quality planning process and in the devel-
opment of their quality control plans. The effort
made by the task force led to an industry-wide
FMEA standard SAE J-1739 issued by the Society
of Automotive Engineers’ in 1994.

Academic discussion on FMEA originates from
the 1960’s when studies of component failures
were broadened to include the effects of compo-
nent failures on the system of which they were a
part. One of the earliest descriptions of a formal
approach for performing a FMEA was given at the
New York Academy of Sciences (see Coutinho,
1964). In the late 1960’s and early 1970’s several
professional societies published formal procedures
for performing the analysis. The generic nature of
the method assisted the rapid broadening of
FMEA to different application areas and various
practices fundamentally using the same analysis
method were created. Along with the digital revo-
lution the FMEA was applied in the analysis of
software-based systems and one of the first arti-
cles regarding to software failure mode and effects
analysis (SWFMEA) was given in Reifer (1979).
Even thought there is no explicit standard for
SWFMEA, the standard IEC 60812 published in
1985 is often referred when carrying out FMEA
for software-based systems. Closer review on
standards related to FMEA and a literature sur-
vey on the topics are given in Chapters 2 and 3.

1.2 Failure Mode and Effects Analysis

A systematic thinking promoted by FMEA is rele-
vant when a new product or system is developed.
FMEA seeks for answer for questions like: what
could go wrong with the system or process in-

11
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volved in creating the system; how badly might it
go wrong; and what needs to be done to prevent
failures? Kennedy (1998) lists the purposes of
FMEA as follows:

e Identify potential design and process related
failure modes. Ideally, the design or process is
changed to remove potential problems in the
early stages of development (Pries, 1998).

e Find the effects of the failure modes. Russo-
manno, Bonnell, and Bowles (1994) noted that
FMEA allows a team to analyse the effect of
each failure on system operation.

e Find the root causes of the failure modes.
Barkai (1999) stated that an FMEA is designed
to find the sources of the failures of a system.

e Prioritise recommended actions using the risk
priority number. Kennedy noted that the risk
priority number is computed using the proba-
bility of occurrence of the failure mode, the
severity of the effect of the failure mode, and
the probability of detection of the failure mode
through manufacturing. Loch (1998) pointed
out that FMEA could provide a prioritised list
of potential failures.

¢ Identify, implement, and document the recom-
mended actions. Pries noted that FMEA docu-
ments should be under formal document con-
trol. Kennedy stated that the recommended
actions are to address failure modes with rank-
ings that are considered unacceptable.

Other authors have presented some specifications
and additional purposes for FMEA such as:

e Assess the safety of various systems and com-
ponents (Russomanno, Bonnell, & Bowles,
1994). Pries (1998) pointed out that hazardous
situations could be identified early in the de-
velopment process. The developers can analyse
the hazardous situation, the causes of the haz-
ardous situation, and solutions to manage the
hazardous situation.

e Highlight any significant problems with a de-
sign (Barkai, 1999). If feasible, the team modi-
fies the design to avoid those problems. John-
son (1998) stated that FMEA could avoid ex-
pensive modifications to designs by identifying
potential failures and preventing them.

12

e Serve as a prelude to test design (Pries, 1998).
Pries noted that the software design FMEA is a
listing of potential problems and is thus a
listing of test cases. Pries pointed out that any
effort put into the FMEA would be helpful in
test case development. Pries stated that the
test descriptions developed from the FMEA
would challenge the software product at its
weakest points by testing for anomalies.

In practice the answers are searched in FMEA
through an iterative analysis process, for which
the main phases are illustrated in Fig. 1. The anal-
ysis process starts from the identification of the
scope of the system and the functions the FMEA is
to be applied on. The development process flow
charts and design plans of the system are used to
support the identification. After the subject for the
FMEA is confirmed the next step is to identify the
potential failure modes in a gradual way. The tech-
nique of brainstorming has often proven to be a
useful method for finding failure modes. There ex-

IDENTIFICATION
OF SYSTEM AND
FUNCTIONS

v

IDENTIFICATION
OF FAILURE MODES

v

DETERMINATION
OF EFFECTS OF
FAILURE MODES

v

IDENTIFICATION
OF POSSIBLE
CAUSES

v

DOCUMENTATION
AND RISK
REDUCTION

Figure 1. Main phases of FMEA.
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ists many different worksheets to support the
brainstorm procedure and the documentation of
FMEA overall. In the following phases the effects
and causes of potential failures are determined. So
called cause and effect diagrams can be used to
help in these phases. The final step is to document
the process and take actions to reduce the risks
due to the identified failure modes.

The FMEA can generally be classified as either
a product FMEA or a process FMEA depending
upon the application. The product FMEA analyses
the design of a product by examining the way that
item’s failure modes affect the operation of the
product. The process FMEA analyses the process-
es involved in design, building, using, and main-
taining a product by examining the way that
failures in the manufacturing or service processes
affect on the operation of the product. Some sourc-
es refer to a design and a process FMEA instead of
a product and a process FMEA, however, both
FMEA types focus on design — design of the
product or design of the process — and therefore
latter terminology is used in the text. The classifi-
cation and different categories of failure mode and
effects analysis of the product and process FMEA
are presented in Fig. 2.

For software-based systems both the product
and process FMEA are appropriate. In the process
FMEA the production of the hardware of a soft-
ware-based system may involve chemical process-
es, machining operations, and the assembly of
subsystem components. The software production
includes the production routines reaching from
requirement specification to the final testing of
the software. Use includes all of the ways a prod-
uct may be used; it includes operator or other

human interfaces, effects of over-stress conditions,
and possible misuses of the system. Maintenance
includes preventive and corrective maintenance
as well as configuration control.

The product FMEA, which can be described as
applying to the hardware or software of the prod-
uct, or to the timing and sequencing of various
system operations. Hardware includes, for exam-
ple, a system’s electrical, mechanical, and hydrau-
lic subsystems and the interfaces between these
subsystems. Software includes programs and their
execution as tasks that implement various system
functions. Software also includes the program in-
terfaces with the hardware and those between
different programs or tasks. Software can be em-
bedded as a functional component in a self-con-
tained system or executed on a general-purpose
computer.

1.3 Software Failure Modes and

Effects Analysis

Performing FMEA for a mechanical or electrical
system is usually more straightforward operation
than what it is for a software-based system. Fail-
ure modes of components such as relays and resis-
tors are generally well understood. Reasons for
the component failures are known and their con-
sequences may be studied. Mechanical and electri-
cal components are supposed to fail, due to some
reason as wearing, ageing or unanticipated stress.
The analysis may not always be easy, but at least,
the safety engineers can rely on data provided by
the component manufacturers, results of tests and
feedback of available operational experience. For
software-based systems the situation is different.
The failure modes of software are generally un-

Types of FMEA
Product Process
Hardware Software Timing/ Production = Maintenance Use
Sequencing
-Electrical -Program/ -Assembly -Configuration -Modes
-Mechanical =~ Task -Chemical control -Human interface
-Interfaces -HW interfaces -Machining -Maintenance -Overstress
-SW interfaces -Software operations -User profiles
-Documentation  -Documentation
-Training -Training

Figure 2. Types of FMEA (SAG, 1996).

13
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known. The software modules do not fail they only
display incorrect behaviour. To find out this incor-
rect behaviour the safety engineer has to apply his
own knowledge about the software to set up an
appropriate FMEA approach.

The main phases of SWFMEA are similar to
the phases shown in Figure 1. The performer of
SWFMEA has to find out the appropriate starting
point for the analyses, set up a list of relevant
failure modes and understand what makes those
failure modes possible and what are their conse-
quences. The failure modes in SWFMEA should be
seen in a wide perspective reflecting the failure
modes of incorrect behaviour of the software as
mentioned above and not for example just as typos
in the software code. The failure mode and effects
analysis for hardware or software has certain
distinguishing characteristics. Ristord et al. (2001)
lists these characteristics as following:

Hardware FMEA:

e May be performed at functional level or part
level.

e Applies to a system considered as free from
failed components.

e Postulates failures of hardware components
according to failure modes due to ageing, wear-
ing or stress.

e Analyses the consequences of theses failures at
system level.

e States the criticality and the measures taken
to prevent or mitigate the consequences.

14

Software FMEA:

e Is only practicable at functional level.

e Applies to a system considered as containing
software faults which may lead to failure under
triggering conditions.

e Postulates failures of software components ac-
cording to functional failure modes due to po-
tential software faults.

e Analyses the consequences of these failures at
system level.

e States the criticality and describes the meas-
ures taken to prevent or mitigate the conse-
quences. Measures can, for example, show that
a fault leading to the failure mode will be
necessarily detected by the tests performed on
the component, or demonstrate that there is no
credible cause leading to this failure mode due
to the software design and coding rules ap-
plied.

After the short historical review and general over-
view to the methodology of failure mode and ef-
fects analysis given in this chapter the structure
of the report is as described below. In Chapter 2, a
literature survey on the topic is carried out based
on published information available. The key stand-
ards related to failure mode and effects analysis
are covered in Chapter 3. In Chapter 4 the special
features of the failure mode and effects analysis
applied on software-based systems are discussed.
Main conclusions on the topic are presented in
Chapter 5.
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2 Survey of literature

There is relatively little information published on
the use of FMEA for information systems (Baner-
jee, 1995). Goddard (2000) noted that techniques
for applying software FMEA to systems during
their design have been largely missing from the
literature. He pointed out that the number of pa-
pers dedicated to software FMEA has remained
small. On the other hand, no papers have been
written reporting on particular projects where
FMEA were used unsuccessfully. The following
survey has mainly been adapted from Signor
(2000).

FMEA is a tool for identifying, analysing and
prioritising failures. Pfleeger (1998) defined a fail-
ure as the departure of a system from its required
behavior; failures are problems that users or cus-
tomers see. Loch (1998) noted that potential fail-
ures may concern functionality, reliability, ease of
repair, process efficiency, choice of manufacturing
method, ease of detection, choice of tools, or the
degree to which machines are used. Reifer (1979)
provided several examples of software failures. An
aircraft autoland system may fail because of a
convergence in its vectoring algorithms during
extreme operating conditions. A safety system
used to monitor a nuclear power plant may have a
logic error that allows a failure to dampen an
overloaded reactor to go undetected. An error in a
spacecraft program for controlling re-entry angle
could cause skip-out and loss of mission.

FMEA provides a framework for a detailed
cause and effect analysis (Russomanno, Bonnell, &
Bowles, 1994). FMEA requires a team to thorough-
ly examine and quantify the relationships among
failure modes, effects, causes, current controls,
and recommended actions. Lutz and Woodhouse
(1996) defined a failure mode as the physical or
functional manifestation of a failure. Luke (1995)
noted that software requirements not being met
are failure modes. An effect in FMEA is the

consequence of the failure mode in terms of opera-
tion, function, or status of the system (Bull, Bur-
rows, Edge, Hawkins, and Woollons, 1996). The
causes column in the FMEA worksheet contains
the principal causes associated with each postulat-
ed failure mode (Onodera, 1997). Stamatis (1995)
stated that current controls exist to prevent the
cause of the failure from occurring. Bluvband and
Zilberberg (1998) pointed out that current controls
are used to detect failures. Controls include warn-
ing lights, gages, filters, and preventive actions
such as design reviews and operator training. The
recommended action in an FMEA may be a specif-
ic action or further study to reduce the impact of a
failure mode (Stamatis, 1995).

By multiplying the values for severity, occur-
rence, and detection, the team obtains a risk
priority number. Severity is the FMEA rating
scale that shows the seriousness of the effect of
the failure (McDermott, Mikulak, & Beauregard,
1996). Occurrence is the FMEA rating scale that
shows the probability or frequency of the failure.
Detection is the probability of the failure being
detected before the impact of the effect is realized.
Risk priority numbers help the team to select the
recommended actions with the most impact.

Ease of Use

FMEA has many—to-many relationships among
failure modes, effects, causes, current controls, and
recommended actions (Bluvband & Zilberberg,
1998). A significant FMEA application soon bogs
down in confusion due to large amounts of repeti-
tive and redundant data. This problem is typical of
FMEA applications. Montgomery, Pugh, Leedham,
and Twitchett (1996) noted that entries in the
FMEA worksheet are voluminous and, as a result,
very brief. They pointed out that these numerous
brief entries make FMEA reports difficult to pro-
duce, difficult to understand, and difficult to main-
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tain. Passey (1999) pointed out that although some
FMEA effects arise repeatedly, FMEA does not
group together the items causing the effects. Pas-
sey noted that the placement of failure modes with
the same effect on multiple pages tends to obscure
the major failure modes that need to be addressed.

Cooper (1999) noted that a good system pro-
vides quick results. However, Montgomery et al.
(1996) noted that the traditional brainstorming
process for FMEA is tedious, time-consuming, and
error-prone. Wirth, Berthold, Kriamer, and Peter
(1996) stated that FMEA is laborious and time-
consuming to carry out. Parkinson, Thompson,
and Iwnicki (1998) stated that FMEA is very time-
consuming and must be focused to avoid masses of
paperwork and workforce hostility. Tsung (1995)
noted that FMEA often suffers from duplication of
effort and large amounts of redundant documen-
tation. The information overload from repetitive,
redundant, and scattered data obscures the rela-
tionships among the rows and columns of the
FMEA, adding to the confusion. Information over-
load is the inability to extract needed knowledge
from an immense quantity of information (Nelson,
1994).

Extent of FMEA Usage
FMEA has been widely adopted and has become
standard practice in Japanese, American, and Eu-
ropean manufacturing companies (Huang et.al.,
1999). Goddard (2000) stated that FMEA is a tra-
ditional reliability and safety analysis technique
that has enjoyed extensive application to diverse
products over several decades. Onodera (1997) in-
vestigated about 100 FMEA applications in vari-
ous industries in Japan. He found that the FMEA
is being used in the areas of electronics, automo-
biles, consumer products, electrical generating
power plants, building and road construction, tele-
communications, etc. Stamatis (1995) pointed out
that FMEA is used in the electromechanical, semi-
conductor and medical device industries and for
computer hardware and software. Hoffman (2000)
noted that FMEA is a mainline reliability and
maintainability tool. The three big United States
automakers request that their suppliers use
FMEA (Chrysler Corporation, Ford Motor Compa-
ny, & General Motors Corporation, 1995).

Perkins (1996) stated FMEA applications in
the aerospace and nuclear industries have seen an
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exponential increase in product software content
and complexity. Stalhane and Wedde (1998) noted
that several companies that develop embedded
systems have been using FMEA for years. God-
dard (2000) pointed out that application of FMEA
to software has been somewhat problematic and is
less common than system and hardware FMEA.

The FMEA in Information Systems

Goddard (2000) stated that there are two types of
software FMEA for embedded control systems:
system software FMEA and detailed software
FMEA. System software FMEA can be used to
evaluate the effectiveness of the software architec-
ture without all the work required for detailed
software FMEA. Goddard noted that system soft-
ware FMEA analysis should be performed as early
as possible in the software design process. This
FMEA analysis is based on the top-level software
design. Goddard stated that the system software
FMEA should be documented in the tabular for-
mat used for hardware FMEA.

Goddard (2000) stated that detailed software
FMEA validates that the software has been con-
structed to achieve the specified safety require-
ments. Detailed software FMEA is similar to com-
ponent level hardware FMEA. Goddard noted that
the analysis is lengthy and labor intensive. He
pointed out that the results are not available until
late in the development process. Goddard argued
that detailed software FMEA is often cost effective
only for systems with limited hardware integrity.

Banerjee (1995) provided an insightful look at
how teams should use FMEA in software develop-
ment. Banerjee presented lessons learned in using
FMEA at Isardata, a small German software com-
pany. FMEA requires teamwork and the pooled
knowledge of all team members. Many potential
failure modes are common to a class of software
projects. Banerjee also pointed out that the corre-
sponding recommended actions are also common.
Good learning mechanisms in a project team or in
an organization greatly increase the effectiveness
of FMEA. FMEA can improve software quality by
identifying potential failure modes. Banerjee stat-
ed that FMEA can improve productivity through
its prioritization of recommended actions.

Pries (1998) pointed out that a software FMEA
can be used as a listing of potential test cases. The
FMEA failure modes can be converted into test
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cases by developing procedures for stimulating the
conditions that can lead to the failure. Pries ar-
gued that because each test case is bound to a
particular failure mode, these test cases can be-
come a particularly aggressive collection of test
procedures.

Lutz and Woodhouse (1996) described their use
of software FMEA in requirements analysis at the
Jet Propulsion Laboratory. Software FMEA helped
them with the early understanding of require-
ments, communication, and error removal. Lutz
and Woodhouse noted that software FMEA is a
time-consuming, tedious, manual task. Software
FMEA depends on the domain knowledge of the
analyst. Similarly, Fenelon and McDermid (1993)
and Pfleeger (1998) pointed out that FMEA is
highly labor intensive and relies on the experience
of the analysts. Lutz and Woodhouse stated that a
complete list of software failure modes cannot be
developed.

Goddard (1993) described the use of software
FMEA at Hughes Aircraft. Goddard noted that
performing the software FMEA as early as possi-
ble allows early identification of potential failure
modes. He pointed out that a static technique like
FMEA cannot fully assess the dynamics of control
loops. Goddard (1996) reported that a combination
of Petri nets and FMEA improved the software
requirements analysis process at Hughes Aircraft.

Moriguti (1997) provided a thorough examina-
tion of Total Quality Management for software
development. Moriguti presented an overview of
FMEA. The book pointed out that FMEA is a
bottom-up analysis technique for discovering im-
perfections and hidden design defects. Moriguti
suggested performing the FMEA on subsystem-
level functional blocks. Moriguti noted that when
FMEA is performed on an entire product, the
effort often quite large. Moriguti pointed out that
using FMEA before the fundamental design is
completed can prevent extensive rework. Moriguti
explained that when prioritization is emphasized
in the FMEA, the model is sometimes referred to
as Failure Modes, Effects and Criticality Analysis
(FMECA).

Pries (1998) outlined a procedure for using
software design FMEA. Pries stated that software
design FMEA should start with system or subsys-
tem outputs listed in the Item and Function (left-
most) columns of the FMEA. The next steps are to

list potential failure modes, effects of failures, and
potential causes. Pries noted that current design
controls can include design reviews, walkthroughs,
inspections, complexity analysis, and coding stand-
ards. Pries argued that because reliable empirical
numbers for occurrence values are difficult or
impossible to establish, FMEA teams can set all
occurrences to a value of 5 or 10. Pries noted that
detection numbers are highly subjective and heav-
ily dependent on the experience of the FMEA
team.

Luke (1995) discussed the use of FMEA for
software. He pointed out that early identification
of potential failure modes is an excellent practice
in software development because it helps in the
design of tests to check for the presence of the
failure modes. In FMEA, a software failure may
have effects in the current module, in higher level
modules, and the system as a whole. Luke suggest-
ed that a proxy such as historical failure rate be
substituted for occurrence.

Stamatis (1995) presented the use of FMEA
with information systems. He noted that computer
industry failures may result from software devel-
opment process problems, coding, systems analy-
sis, systems integration, software errors, and typ-
ing errors. Stamatis pointed out that failures may
arise from the work of testers, developers, and
managers. Stamatis noted that a detailed FMEA
analysis may examine the source code for errors in
logic and loops, parameters and linkage, declara-
tions and initializations, and syntax.

Ammar, Nikzadeh, and Dugan (1997) used se-
verity measures with FMEA for a risk assessment
of a large-scale spacecraft software system. They
noted that severity considers the worst potential
consequence of a failure whether degree of inju-
ries or system damages. Ammar, Nikzadeh, and
Dugan used four severity classifications. Cata-
strophic failures are those that may cause death
or system loss. Critical failures are failures that
may cause severe injury or major system damage
that results in mission loss. Marginal failures are
failures that may cause minor injury or minor
system damage that results in delay or loss of
availability or mission degradation. Minor failures
are not serious enough to cause injuries or system
damage but result in unscheduled maintenance or
repair.

Maier (1997) described the use of FMEA during
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the development of robot control system software
for a fusion reactor. He used FMEA to examine
each software requirement for all possible failure
modes. Failure modes included an unsent mes-
sage, a message sent too early, a message sent too
late, a wrong message, and a faulty message.
FMEA causes included software failures, design
errors, and unforeseen external events. Maier not-
ed that for software failures, additional protective
functions to be integrated in the software may
need to be defined. For design errors, the errors
may need to be removed or the design may need to
be modified. Maier stated that unforeseen exter-
nal events may be eliminated by protective meas-
ures or changing the design. Maier recommended
that the methodology he presented be applied at
an early stage of the software development proc-
ess to focus development and testing efforts.

Bouti, Kadi, and Lefrancois (1998) described
the use of FMEA in an automated manufacturing
cell. They noted that a good functional description
of the system is necessary for FMEA. They recom-
mended the use of an overall model that clearly
specifies the system functions. They suggested the
use of system modeling techniques that facilitate
communication and teamwork. Bouti, Kadi, and
Lefrancois argued that it is impossible to perform
a failure analysis when functions are not well
defined and understood. They pointed out that
failure analysis is possible during the design phase
because the functions are well established by then.
Bouti, Kadi, and Lefrancois also noted that when
several functions are performed by the same com-
ponent, possible failures for all functions should
be considered.

Becker and Flick (1996) applied FMEA in Lock-
heed Martin’s development of a distributed system
for air traffic control. They described the failure
modes and detection methods used in their FMEA.
The classes of failure modes for their application
included hardware or software stop, hardware or
software crash, hardware or software hang, slow
response, startup failure, faulty message, check-
point file failure, internal capacity exceeded, and
loss of service. Becker and Flick listed several
detection methods. A task heartbeat monitor is
coordination software that detects a missed func-
tion task heartbeat. A message sequence manager
checks message sequence numbers to flag messag-
es that are not in order. A roll call method takes
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attendance to ensure that all members of a group
are present. A duplicate message check looks for
the receipt of duplicate messages.

Stalhane and Wedde (1998) used FMEA with a
traffic control system in Norway. They used FMEA
to analyse changes to the system. They noted that
potentially any change involving an assignment or
a procedure call can change system parameters in
a way that could compromise the system’s safety.
The FMEA pointed out code segments or proce-
dures requiring further investigation. Stalhane
and Wedde also stated that for an FMEA of code
modifications, implementation and programming
language knowledge is very important.

FMEA Size

The sheer size of the FMEA presents a challenge.
An FMEA worrksheet is at least 16 columns wide,
is often several levels deep, and is sometimes doz-
ens or hundreds of pages long. Montgomery et al.
(1996) noted that entries in the FMEA worksheet
are voluminous. Bull et al. (1996) pointed out that
a manual FMEA is a bulky document. Parkinson,
Thompson, and Iwnicki (1998) stated that FMEA
must be focused to avoid masses of paperwork.
Tsung (1995) noted that FMEA often suffers from
large amounts of documentation. Large documents
implemented in Excel require much scrolling and
scrolling adversely affects ease of use (Plaisant et.
al., 1997).

FMEA Basics

An FMEA worksheet has multiple rows with fixed
column headings. The FMEA worksheet is often
arranged in 16 columns, 11 for the FMEA Process
and 5 for the Action Results (McDermott, Mikulak,
& Beauregard, 1996). Passey (1999) pointed out
that no universal FMEA format has emerged. The
FMEA Process columns normally include Item and
Function; Potential Failure Mode; Potential
Effect(s) of Failure; Severity; Potential Cause(s) of
Failure; Occurrence; Current Controls; Detection;
Risk Priority Number; Recommended Action; and
Responsibility and Target Completion Date. The
Action Results columns include Action Taken, Se-
verity, Occurrence, Detection, and Risk Priority
Number. Kukkal, Bowles, and Bonnell (1993) stat-
ed that failure effects at one level of a system need
to be propagated as failure modes to the next high-
er level.
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Breyfogle (1999) described the road map for creat-
ing FMEA entries as follows. First, note an input
or function of a process or design. Then, list two or
three ways the input or function can go wrong.
Next, list one or more effects of failure. For each
failure mode, list one or more causes of input go-
ing wrong. Then, for each cause, list at least one
method of preventing or detecting the cause. Last,
enter the severity, occurrence, and detection val-
ues.

Stamatis (1995) wrote the most comprehensive
reference available for FMEA (Schneider, 1996).
Stamatis stated that there are four types of
FMEA: the system FMEA, the design FMEA, the
process FMEA, and the service FMEA. All types of
FMEA produce a list of failure modes ranked by
the risk priority numbers and a list of recommend-
ed actions to reduce failures or to improve failure
detection.

The system FMEA is used to analyse systems
and subsystems in the early concept and design
phase (Stamatis, 1995). A system FMEA analyses
potential failure modes between the functions of
the system caused by system deficiencies. This
FMEA includes the interactions between systems
and the elements of the system. A significant
output of the system FMEA is a list of potential
system functions that could detect potential fail-
ure modes.

The design FMEA is used to analyse products
before they are released to manufacturing (Stama-
tis, 1995). A design FMEA analyses failure modes
caused by deficiencies in the design of a system.
Significant outputs of the design FMEA are a list
of critical and/or significant characteristics of the
design; a list of potential parameters for testing,
inspection, and/or detection methods; and a list of
potential recommended actions for the critical and
significant characteristics of the design.

The process FMEA is used to analyse manufac-
turing and assembly processes (Stamatis, 1995). A
process FMEA analyses failure modes caused by
process or assembly deficiencies. Significant out-
puts of the process FMEA are a list of critical and/
or significant characteristics of the process and a
list of potential recommended actions to address

the critical and significant characteristics.

The service FMEA is used to analyse services
before they reach the customer (Stamatis, 1995). A
service FMEA analyses failure modes such as
tasks, errors, and mistakes caused by system or
process deficiencies. Significant outputs of the
service FMEA are a list of critical or significant
tasks or processes, a list of potential bottleneck
processes or tasks, and a list of potential functions
for monitoring the system or process.

Hoffman (2000) noted that today’s commercial-
ly available FMEA tools are nothing more than
documentation aids. Russomanno, Bonnell, and
Bowles (1994) and Montgomery et al. (1996) point-
ed out that these packages do not include any
intelligence but merely assist with clerical func-
tions, data collection, database manipulations, and
automatic report generation.

Ristord et. al. (2001) describe the application of
FMEA procedure on the new nuclear instrumen-
tation system (NIS) at Tihange nuclear power
plant in Belgium. The NIS-system is implemented
on a generic software-based safety system plat-
form SPINNLINE 3 by Schneider Electric Indus-
tries. The choice of a software-based technology
has raised the issue of the risk of CCF due to the
same software being used in redundant independ-
ent units. Implementing functional diversity or
equipment diversity has been considered but
found either not practicable or of little value
within this context. Because of the possible conse-
quences in case of the NIS not performing its
protection function on demand, the licensing au-
thority has required an FMEA oriented toward
the SCCF risk as part of the safety case.

This FMEA has been performed on the NIS
architecture, the SPINLINE 3 Operational System
Software and the three application software pack-
ages (i.e. source, intermediate and power range).
The software FMEA experience included the ad-
aptation of the principles of FMEA to analyse a
software program, the choice of a “block of instruc-
tion” (BI) approach to identify the components to
analyse, the definition of the software failure
modes associated with the Bls and the feedback of
experience.
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3 FMEA standards

3.1 Overview

As mentioned already in the previous chapters
various industries have established their own
FMEA standards to provide the best support for
the product and process FMEA related to a specif-
ic branch of industry. Aerospace and defence com-
panies have usually referred to the MIL-STD-
1629A standard. Automotive suppliers have most-
ly used SAE J-1739 or the Chrysler, Ford, and
General Motors provided FMEA methodologies.
Other industries have generally adopted one of
these or the IEC 60812 standard customising the
standards to meet the specific requirements and
needs of the industry. A short review to the stand-
ards referred in the text is given in this chapter.

3.2 IEC 60812
IEC 60812 published by the International Electro-
technical Commission describes a failure mode
and effects analysis, and a failure mode, effects
and criticality analysis. The standard gives guid-
ance how the objectives of the analysis can be
achieved when using FMEA or FMECA as risk
analysis tools. The following information is includ-
ed in the standard:
¢ procedural steps necessary to perform an anal-
ysis
e identification of appropriate terms, assump-
tions, criticality measures, failure modes
¢ determining basic principles
¢ form for documenting FMEA/FMECA
e criticality grid to evaluate failure effects.

3.3 MIL-STD-1629A

MIL-STD-1629A is dated on November 24th, 1980,
and has been published by the United States De-
partment of Defence. The standard establishes re-
quirements and procedures for performing a fail-
ure mode, effects, and criticality analysis. In the
standard FMECA is presented to systematically
evaluate and document the potential impacts of
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each functional or hardware failure on mission
success, personnel and system safety, system per-
formance, maintainability and maintenance re-
quirements. Each potential failure is ranked by
the severity of its effect in order that appropriate
corrective actions may be taken to eliminate or
control the risks of potential failures. The docu-
ment details the functional block diagram model-
ling method, defines severity classification and
criticality numbers. The following sample formats
are provided by the standard:

e failure mode and effects analysis

e criticality analysis

FMECA- maintainability information
e damage mode and effects analysis

failure mode, effects, and criticality analysis
plan

MIL-STD-1629A was cancelled by the action of the
standard authority on August 4th, 1998. Users
were referred to use various national and interna-
tional documents for information regarding fail-
ure mode, effects, and criticality analysis.

3.4 SAE J-1739

The document provides guidance on the applica-
tion of the failure mode and effects analysis tech-
nique. The focus is on performing the product,
process and plant machinery FMEA. The standard
outlines the product and process concepts for per-
forming FMEA on plant machinery and equip-
ment, and provides the format for documenting
the study. The following information is included in
the document:

e FMEA implementation

e what is an FMEA?
format for documenting product/process FMEA

on machinery

development of a product/process FMEA

suggested evaluation criteria for severity,
detection and occurrence of failure.
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4 SWFMEA procedure

The Failure Mode and Effects Analysis procedures
were originally developed in the post World War II
era for mechanical and electrical systems and
their production processes, before the emergency
of software based systems in the market. Common
standards and guidelines even today only briefly
consider the handling of the malfunctions caused
by software faults and their effects in FMEA and
often state that this is possible only to a limited
extent (IEC 60812). No specific standard or guide-
line concentrating on the special issues of soft-
ware-based system FMEA has yet been published.

A general FMEA/FMECA procedure is de-
scribed in the IEC 60812 standard. Present official
version of this standard stems from the year 1985.
IEC TC56/WG 2 is, however, working on a revision
of the standard; a Committee Draft (CD) has been
distributed to the committee members in spring
2001.

The general FMEA/FMECA procedure present-
ed in IEC 60812 agrees well with other major
FMEA standards and guidelines presented in
Chapter 3. These procedures constitute a good
starting point also for the FMEA for software-
based systems. Depending on the objectives, level
etc. of the specific FMEA this procedure can easily
be adapted to the actual needs case by case.

In this chapter the whole structure of the
FMEA procedure is not presented (refer to the
IEC 60812). Instead, only the special aspects con-
nected to the incorporation of the software failure
modes and effects in the failure mode and effects
analysis of a software-based automation system
application are considered. These considerations
are based on the findings from the (rather sparse)
literature on the specific subject.

A complete FMEA for a software-based auto-
mation system shall include both the hardware
and software failure modes and their effects on
the final system function. In this report we, how-
ever, confine only on the software part of the
analysis, the hardware part being more straight-
forward (if also difficult itself).

As a starting point for the following considera-
tions the main procedural steps of a FMEA are
defined to be (adapted from IEC 60812):

¢ Define system boundaries for analysis,

¢ understand system requirements and function,

e define failure/success criteria,

¢ breakdown the system into elements,

e determine each element’s failure modes and

their failure effects and record these,
e summarise each failure effect, and
¢ report findings.

FMEA is documented on tabular worksheet; an
example of typical FMEA worksheet (derived from
IEC 60812) is presented in App. 1; this can readily
be adapted to the specific needs of each actual
FMEA application. App. 2. gives an example of a
SWFMEA form.

Criticality analysis is a quantitative extension
of the (qualitative) FMEA. Using the failure ef-
fects identified by the FMEA, each effect is classi-
fied according to the severity of damages it causes
to people, property or environment. The frequency
of the effect to come about together with its
severity defines the criticality. A set of severity
and frequency classes are defined and the results
of the analysis is presented in the criticality ma-
trix (Fig. 3, IEC 60812). The SAE J-1739 stand-
ards adds a third aspect to the criticality assess-
ment by introducing the concept of Risk Priority
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Figure 3. The criticality matrix.
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Number (RPN) defined as the product of three
entities, Severity, Occurrence (i.e. frequency) and
Detection.

4.1 Level of analysis

The FMEA is a bottom-up method, where the sys-
tem under analysis is first hierarchically divided
into components (Fig. 4). The division shall be
done in such a way that the failure modes of the
components at the bottom level can be identified.
The failure effects of the lower level components
constitute the failure modes of the upper level
components.

The basic factors influencing the selection of
the proper lowest level of system decomposition
are the purpose of the analysis and the availabili-
ty of system design information.

When considering the FMEA of a software-
based automation system application, the utmost
purpose of the analysis usually is to find out if
there are some software faults that in some situa-
tion could jeopardise the proper functioning of the
system. The lowest level components from which

Higher levels

Failure
modes

Failure effects

l
|
Level 1 |
l
e Failure ~Z "~~~ "~~~ "7
modes
Failure effects
T L S
: Item :
Bottom level E—E n 3
] Failwe ~ Failwe |
modes modes

Figure 4. The FMEA level hierarchy (adapted
from IEC 60812).

the analysis is started are then units of software
executed sequentially in some single processor or
concurrently in parallel processor of the system.

A well-established way to realise software-
based safety-critical automation applications now-
adays is to implement the desired functions on an
automation system platform, e.g. on a programma-
ble logic system or on a more general automation
system. The software in this kind of realisation is
on the first hand divided into system software and
application software. The system software (a sim-
ple operating system) can further be divided into
the system kernel and system services. The kernel
functions include e.g. the system boot, initialisa-
tion, self-tests etc. whereas the system services
e.g. take care of different data handling opera-
tions. The platform includes also a library of
standardised software components, the function
blocks (“modules”), of which the application is
constructed by connecting (“configuring”) ade-
quate function blocks to form the desired applica-
tion functions, which rest on the system service
support (see Fig. 5). The automation system plat-
form also contains a graphical design tool. Using
this tool the designer converts the functional spec-
ifications of the application to a functional block
diagram which is then automatically translated to
the executable object code. The total design docu-
mentation of the application thus consists crudely
of the requirement specification, the functional
specification, the functional block diagrams and
the (listing) of the object code.

A natural way of thinking would then suggest
that the FMEA of a software-based application
could be started from the function block diagrams
by taking the individual function blocks as the
lowest level components in the analysis. In prac-
tice this procedure, however, seems unfeasible.
Firstly, this approach in most cases leads to rather
extensive and complicated analyses, and secondly,

System kernel

System software

\

System services

Application software —» Modules — Application function

Figure 5. Construction of the application function.
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the failure modes of the function blocks are not
known.

E.g. Ristord et. al. (2001) state that the soft-
ware FMEA is practicable only at the (application)
function level. They consider the SPINLINE 3
application software to be composed of units called
Blocks of Instructions (Bls) executed sequentially.
The Bls are defined by having the following prop-
erties:

e Bls are either “intermediate”—they are a se-
quence of smaller Bls—or “terminal”—they
cannot be decomposed in smaller Bls.

e They have only one “exit” point. They produce
output results from inputs and possibly memo-
rized values. Some Bls have direct access to
hardware registers.

e They have a bounded execution time (i.e. the
execution time is always smaller than a fixed
value).

¢ They exchange data through memory varia-
bles. A memory variable is most often written
by only one BI and may be read by one or
several Bls.

Their system decomposition of the SPINLINE 3
software is presented in Fig. 6.

4.2 Failure modes

When a proper way of decomposing the system
under analysis is found the next step is to define
the failure modes of the components. For the hard-
ware components this in general is straightfor-
ward and can be based on operational experience

'

of the same and similar components. Component
manufacturers often give failure modes and fre-
quencies for their products.

For the software components such information
does not exists and failure modes are unknown (if
a failure mode would be known, it would be
corrected). Therefore, the definition of failure
modes is one of the hardest parts of the FMEA of a
software-based system. The analysts have to apply
their own knowledge about the software and pos-
tulate the relevant failure modes.

Reifer (1979) gives the following general list of
failure modes based on the analysis of three large
software projects.

¢ Computational
e Logic

e Data I/0

e Data Handling
e Interface

e Data Definition
e Data Base

e Other.

Ristord et. al. (2001) give a the following list of five
general purpose failure modes at processing unit
level:
¢ the operating system stops
¢ the program stops with a clear message
¢ the program stops without clear message
e the program runs, producing obviously wrong
results
e the program runs, producing apparently cor-
rect but in fact wrong results.

Initialisation

Self testing ¢

y v

Digital input

Processing

Acquisition Y

| ]

Analog input

Application T

v

Figure 6. First levels of the decomposition of the SPINLINE 3 software (Ristord et. al., 2001).
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More specifically, they define for the SPINLINE 3
BIs the following list of failure modes:
e the BI execution does not end through the
“exit” point
¢ the BI execution time does not meet time limits
¢ the BI does not perform the intended actions or
performs unintended actions:
¢ it does not provide the expected outputs
¢ it modifies variables that it shall not modify
e it does not interact as expected with I/O
boards
¢ it does not interact as expected with CPU
resources
¢ it modifies code memory or constants.

Lutz et.al. (1999b) divide the failure modes con-
cerning either the data or the processing of data.
For each input and each output of the software
component, they consider of the following four fail-
ure modes:
e Missing Data (e.g., lost message, data loss due
to hardware failure)
¢ Incorrect Data (e.g., inaccurate data, spurious
data)
e Timing of Data (e.g., obsolete data, data arrives
too soon for processing)
¢ Extra Data (e.g., data redundancy, data over-
flow).

For each event (step in processing), on the other
hand, they consider of the following four failure
modes:
e Halt/Abnormal Termination (e.g., hung or dead-
locked at this point)
¢ Omitted Event (e.g., event does not take place,
but execution continues)
e Incorrect Logic (e.g., preconditions are inaccu-
rate; event does not implement intent)
¢ Timing/Order (e.g., event occurs in wrong or-
der; event occurs too early/late).

Becker et. al. (1996) give the following classes of
failure modes:

¢ hardware or software stop

¢ hardware or software crash

¢ hardware or software hang

¢ slow response

startup failure

24

faulty message

checkpoint file failure

internal capacity exceeded

loss of service.

They also listed the following detection methods:

e a task heartbeat monitor is coordination soft-
ware that detects a missed function task heart-
beat

e a message sequence manager checks the se-
quence numbers for messages to flag messages
that are not in order

e a roll call method takes attendance to ensure
that all members of a group are present

e a duplicate message check looks for the receipt
of duplicate messages.

Still further, a very comprehensive classification
of software failure modes is given by Beizer (1990).

IEC 60812 also gives guidance on the definition
of failure modes and contains two tables of exam-
ples of typical failure modes. They are, however,
largely rather general and/or concern mainly me-
chanical system thus not giving much support for
software FMEA. The same goes also for other
common standards and guidelines.

The FMEA also includes the identification and
description of possible causes for each possible
failure mode. Software failure modes are caused
by inherent design faults in the software; there-
fore when searching the causes of postulated fail-
ure modes the design process should be looked at.
IEC 60812 gives a table of possible failure causes,
which largely are also applicable for software.

4.3 Information requirements

The TEC 60812 standard defines rather compre-

hensively the information needs for the general

FMEA procedure. It emphasises the free availabil-

ity of all relevant information and the active co-

operation of the designer. The main areas of infor-

mation in this standard are:

® system structure

e gystem initiation, operation, control and main-
tenance

e gystem environment

e modelling

e system boundary
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definition of the system’s functional structure
e representation of system structure

block diagrams

failure significance and compensating provi-
sions.

A well-documented software-based system design
mostly covers these items, so it is more the ques-
tion of the maturity of the design process than the
specialities of software-based system.

4.4 Criticality analysis

As stated earlier, the Criticality Analysis is a
quantitative extension of the FMEA, based on the
severity of failure effects and the frequency of fail-
ure occurrence, possibly augmented with the prob-
ability of the failure detection. For an automation
system application, the severity is determined by
the effects of automation function failures on the
safety of the controlled process. Even if difficult,
the severity of a single low level component failure
mode can in principle be concluded backwards

from the top level straightforwardly.

The frequency of occurrence is much harder to
define for a software-based system. The manifes-
tation of an inherent software fault as a failure
depends not only on the software itself, but also on
the operational profile of the system, i.e. on the
frequency of the triggering even that causes the
fault to lead to failure. This frequency is usually
not known. Luke (1995) proposed that a proxy
such as McCabe’s complexity value or Halstead’s
complexity measure be substituted for occurrence.
Luke argued that there is really no way to know a
software failure rate at any given point in time
because the defects have not yet been discovered.
He stated that design complexity is positively
linearly correlated to defect rate. Therefore, Luke
suggested using McCabe’s complexity value or
Halstead’s complexity measure to estimate the
occurrence of software defects.

Also the probability of detection is hard to
define, since only a part of software failures can be
detected with self-diagnostic methods.
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5 Conclusions

Failure mode and effects analysis (FMEA) is a
well-established reliability engineering tool wide-
ly used in various fields of industry. The purpose
of FMEA is to identify possible failure modes of
the system components, evaluate their influences
on system behaviour and propose proper counter-
measures to suppress these effects. FMEA is pri-
marily adapted to the study of material and equip-
ment failures and can be applied to systems based
on different technologies (electrical, mechanical,
hydraulic etc.) and combinations of these technolo-
gies (IEC 60812).

FMEA is well understood at the systems and
hardware levels, where the potential failure modes
usually are known and the task is to analyse their
effects on system behaviour. Nowadays, more and
more system functions are realised on software
level, which has aroused the urge to apply the
FMEA methodology also on software-based sys-
tems. Software failure modes generally are un-
known (“software modules do not fail, they only
display incorrect behaviour”) and depend on dy-
namic behaviour of the application. These facts set
special requirements on the FMEA of software
based systems and make it difficult to realise. A
common opinion is that FMEA is applicable to
software-based systems only to a limited extent.

Anyhow, the total verification and validation
(V&V) process of a software-based safety critical
application shall include also the software failure
mode and effects analysis of the system at a
proper level. FMEA can be used in all phases of
the system life cycle from requirement specifica-
tion to design, implementation, operation and

26

maintenance. Most benefit from the use of FMEA
can be achieved at the early phases of the design,
where it can reveal weak points in the system
structure and thus avoid expensive design chang-
es.

Perhaps the greatest benefit from the FMEA
applied on a software-based system is the guid-
ance it can give for other V&V efforts. By reveal-
ing the possible weak points it can e.g. help
generating test cases for system testing.

The FMEA can not alone provide the necessary
evidence for the qualification of software-based
safety critical applications in nuclear power
plants, but the method should be combined with
other safety and reliability engineering methods.
Maskuniitty et. al. (1994) propose a stepwise re-
fined iterative application of fault tree analysis
(FTA) and failure mode and effects analysis proce-
dure as described in Fig. 7. This is similar with the
Bi-directional Analysis (BDA) method proposed by
Lutz et. al. (1997, 1999b). The preliminary fault
tree analysis and determination of minimal cut
sets directs the identification of failure modes to
those that are most significant for the system
reliability, the effects analysis of these failures,
then steer the refinement of the fault trees and
the final detailed FMEA.

The fault trees and reliability block diagrams
are basically static approaches that can not reach
all the dynamical aspects of the software. Other
approaches, e.g. Petri net analysis, Dynamic flow-
graph analysis etc. have been proposed to catch
these effects in the reliability and safety analysis
of software-based system (Pries, 1998).
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DESCRIPTION AND
FAMILIARIZATION
OF THE SYSTEM

v

PRELIMINARY FAULT
TREE ANALYSIS

- fault tree construction
- minimal cut set search

v

PRELIMINARY FMEA

- identification of the
failure modes corres-
ponding to the fault
tree basic events in
the shortest minimal

cut sets

DETAILED FAULT
TREE ANALYSIS

- modification of the
fault tree using the
FMEA results

- documentation

- minimal cut set search

v

DETAILED FMEA

- more detailed software
FMEA
- documentation

Figure 7. The analysis steps of combined FTA/FMEA procedure.
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ExampLe oF THE FMEA-worksHeeT (IEC 60812)
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APPENDIX 2 AN exampLe oF A SWFMEA rorm (TUV Norb)
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