Scenario-based FMEA Using Expected Cost

A New Perspective on Evaluating Risk in FMEA

IIE Workshop January 22, 2002

Steven Kmenta

kmenta@stanfordalumni.org

Failure Modes & Effects Analysis

FMEA is a technique used to identify, prioritize, and eliminate potential failures from the system, design or process before they reach the customer

Omdahl, 1988

FMEA is a risk management tool used on Products (designs) and Processes

Three Phases of FMEA

Phase	Question	Output
Identify	• What can go wrong?	Failure Descriptions
		Causes → Failure Modes → Effects
A nalyze	• How likely is a failure?	Risk Priority Number
	What are the consequences?	$(\mathbf{RPN} = \mathbf{O}_{ccurrence} \times \mathbf{S}_{everity} \times \mathbf{D}_{etection})$
A ct	• What can be done?	Design solutions,
	How can we eliminate the cause?How can we reduce the severity?	test plans,manufacturing changes,error proofing, etc.

History of FMEA

- First used in the 1960's in the Aerospace industry during the Apollo missions
- In 1974, the Navy developed FMEA Procedure Mil-Std-1629
- In the early 1980's, troubled US automotive companies began to incorporate FMEA into their product development process
- Mil-Std 1629A is the most widely used FMEA procedure

FMEA Spreadsheet

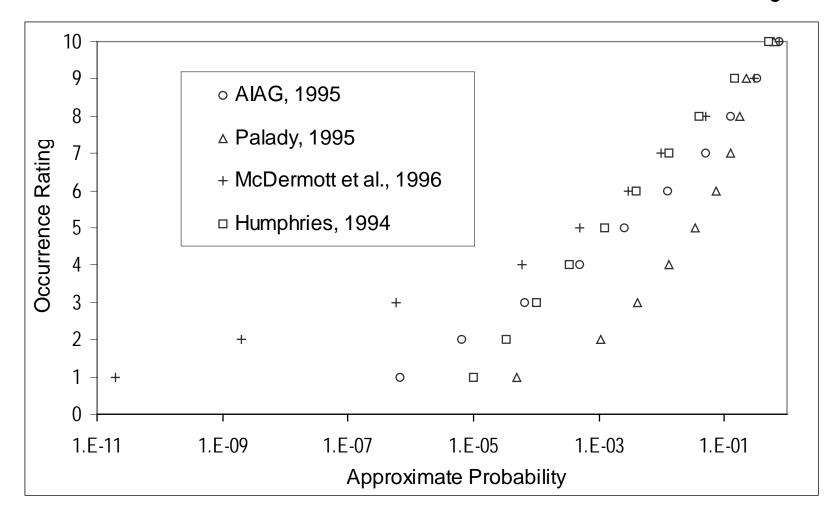
Function or Requirement	Potential Failure Modes	Potential Causes of Failure	Occurrence	Local Effects	End Effects on Product, User, Other Systems	Severity	Detection Method/ Current Controls	Detection	R P N	Actions Recommended	Responsibility and Target Completion Date

FMEA and the Risk Priority Number (RPN) have been around for many years

Criticisms of FMEA

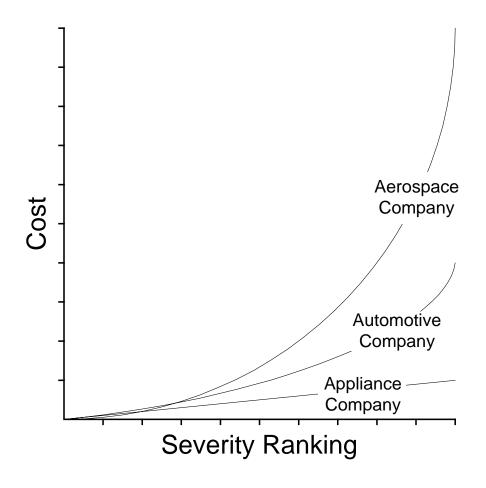
- FMEA often misses key failures (Bednarz et al., 1988)
- FMEA performed too late does not affect key product/process decisions (McKinney, 1991)
- The FMEA Process is tedious (Ormsby et al., 1992)
- The Risk Priority Number is not a good measure of Risk (Gilchrist, 1993: Harpster 1999)

Let's discuss the RPN as a measure of Risk


The Risk Priority Number

• The RPN is used *prioritize* potential failures

```
RPN = (Occurrence) x (Severity) x (Detection)
```


- Occurrence (O): How likely is the cause and failure mode to occur?
- **Severity (S):** How serious is the impact of the **end effect**?
- **Detection (D):** How difficult is the **cause and failure mode** to detect..?
 - O, S, and D are rated on a 1 to 10 scale

Occurrence is Related to Probability

Ratings arbitrarily reflect probabilities

Severity is Related to "Cost"

Cost-Severity relationships for hypothetical industries

Criticisms of Detection

- "Detection" has many definitions
- Most definitions are confusing since they address:
 - design review process (an organizational issue)
 - manufacturing inspection (a QC issue)
 - the diagnosibility of a failure (a Severity issue)
- High cost (time), for low benefit
- Some standards ignore Detection (SAE J1739)

Our ultimate interest: How likely is the failure to occur?

No Consistent Definition of Terms

- Definitions for O, S, D depend on FMEA standard
- O, S, D and RPN can have different meanings for each FMEA
- Sharing numbers between companies and groups is very difficult

RPN number has no clear "meaning"

O, S, D use Ordinal Scales

- Used to rank items along a single dimension (e.g. hotels)
- Ordinal scales preserve transitivity (rank-order)
- Magnitudes of Ordinal scales are "not meaningful"
 - 8 is not twice as much as 4
- RPN is the product three ordinal indices
- But multiplication of ordinal indices is not "valid", since the product does not preserve rank-order

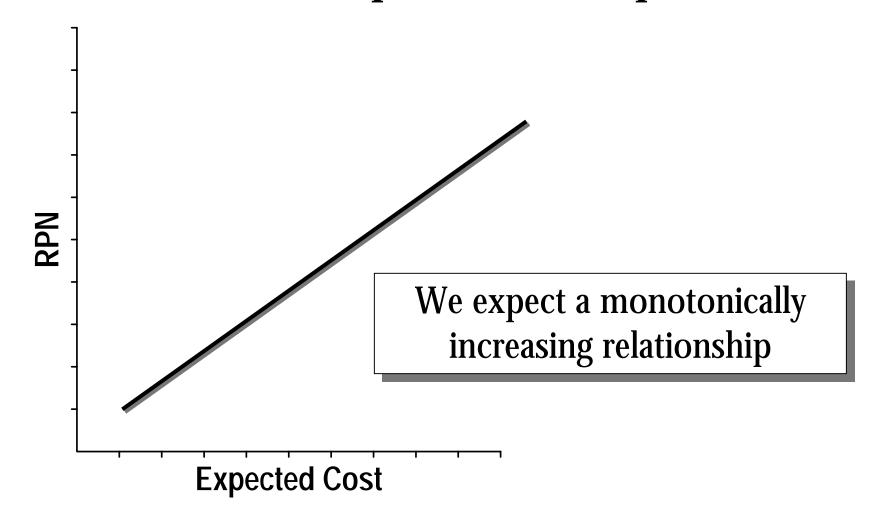
S. Kmenta 1/22/2002 11 of 32

What is Risk?

- Possibility of incurring damage (Hauptmanns & Werner, 1991)
- Exposure to chance of injury or loss (Morgan & Henrion, 1988)
- Possibility of loss or injury (Webster's Dictionary, 1998)

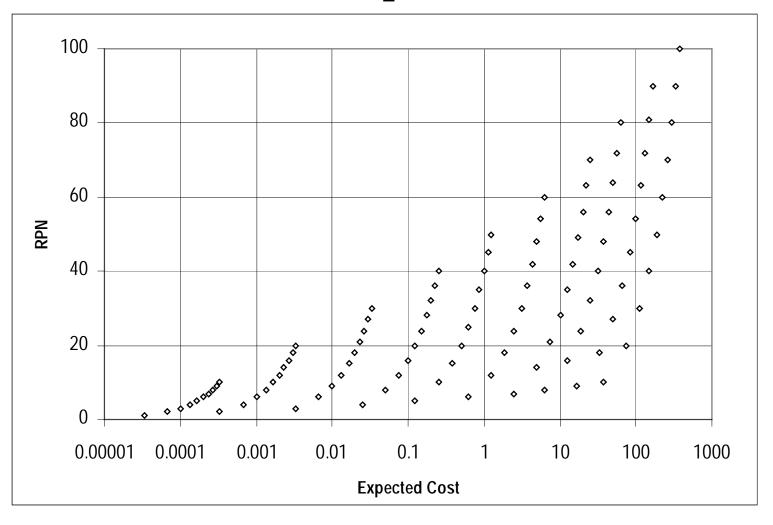
Elements of risk: "chance" and "loss"

- <u>Probability</u> is a universal measure of <u>chance</u>
- <u>Cost</u> is an accepted measure of <u>loss</u>
- Most common measure of risk is "Expected Cost"

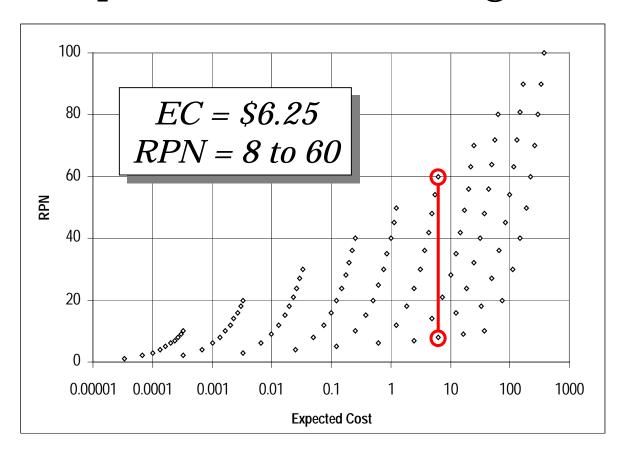

Expected Cost = $(probability) \times (cost)$

RPN vs. Expected Cost Example

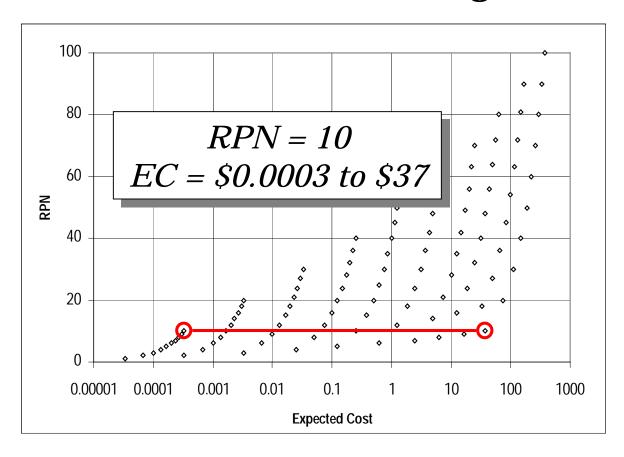
Example O	ccurrence Ratings	Example Cost	Function		
Occurrence	probability (p) 6.667 E-7	Severity	cost (c)	RPN	Exp.
2	6.667 E-6	2	50 100	(OxS)	
3	6.667 E-5 0.0005	3 4	150 200		
5 6	0.0025 0.0125	5	250	40	\$31
7	0.05	7	300 350		
8	0.125	8	400 450	32	\$0.2
10	0.75	10	500		


- 100 possible failure "ratings" (Assume Detection = 1)
- We can plot RPN vs. Expected Cost

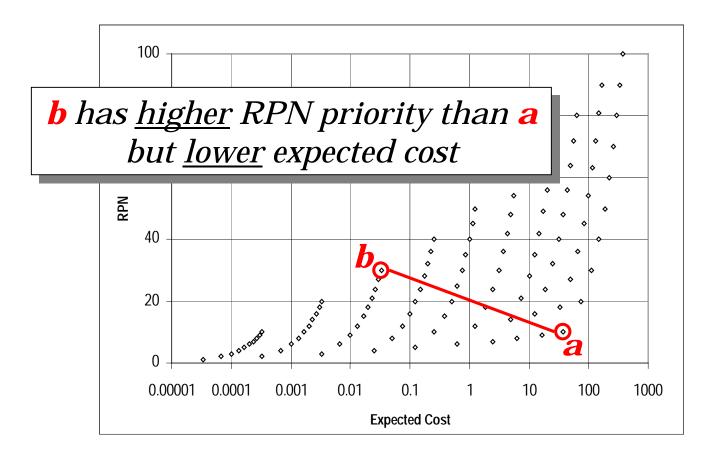
What Relationship Do We Expect?


What is the actual relationship?

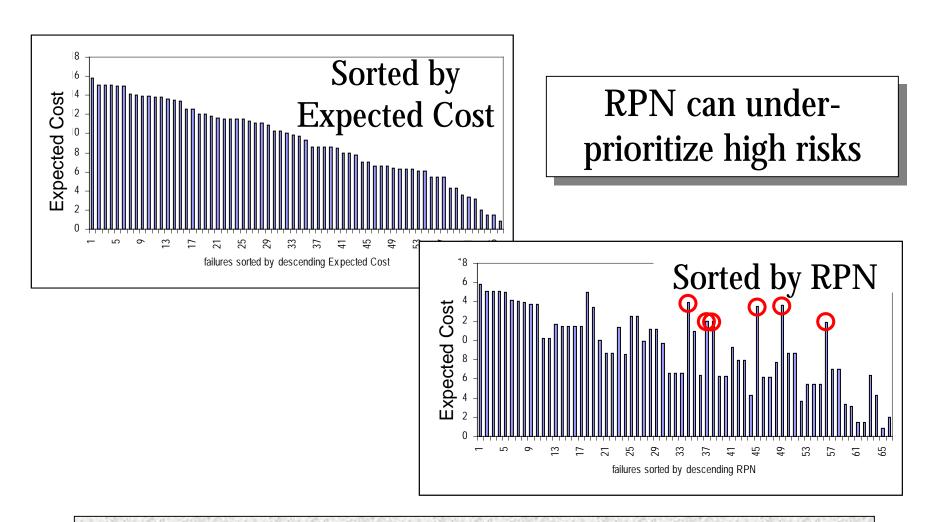
RPN vs. Expected Cost


RPN-Expected cost mapping is not 1

Constant Exp. Cost has Wide range of RPN's


Probability	Cost	Expected	Occurrence	Severity	RPN *
_		cost	Rank, L	Rank, Š	(O x S x D)
.125	\$50	\$ 6.25	8	1	8
.0125	\$500	\$ 6.25	6	10	60

Constant RPN has Wide Range of ECost


Probability	Cost	Expected	Occurrence	Severity	RPN *
·		cost	Rank, L	Rank, Š	(O x S x D)
0.75	\$ 50	\$ 37.50	10	1	10
6.66x10-7	\$500	\$ 0.00033	1	10	10

Higher RPN can Have Lower ECost

	Probability	Cost	Expected	Occurrence	Severity	RPN *
	•		cost	Rank, O	Rank, Š	(O x S x D)
a	0.75	\$50	\$ 37.50	10	1	10
b	6.66x10-5	\$500	\$ 0.033	3	10	30

RPN Priority Differs from Exp Cost

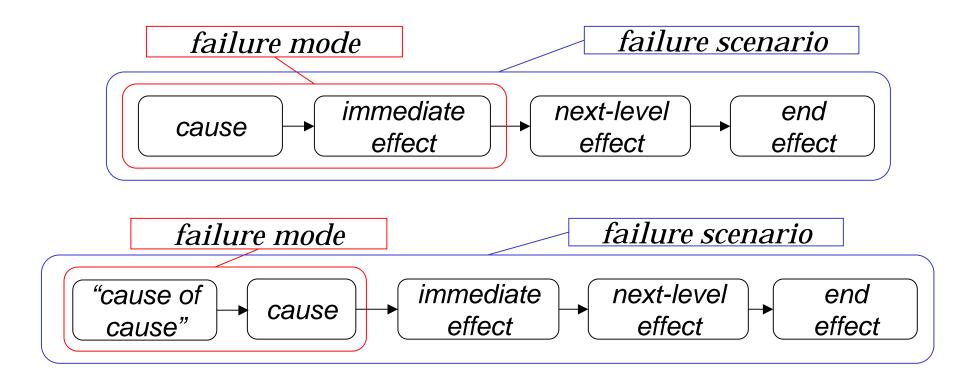
Using "Detection" makes RPN-EC correlation

Conventional Failure Mode Representation

Potential Failure Mode

The manner in which a component, subsystem, or system could potentially fail to meet the design intent. The potential failure mode could also be the cause of a potential failure mode in a higher level subsystem, or

system, or the effect of one lower level effect. (AIAG)

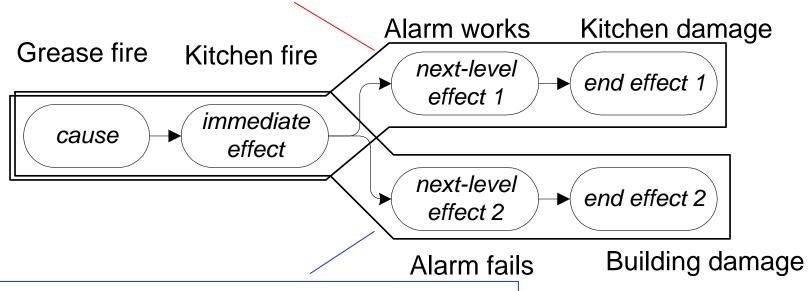

• Sometimes failure mode is a cause, sometimes an effect

 $\ldots \rightarrow \textit{Confusing}$

- Conventional FMEA do not always differentiate between "failure modes" with different outcomes
 - Stage of detection is not specified...
 - Risk estimates are grouped & mitigation strategies are unclear

Failure Scenarios

- A failure scenario is an undesired cause-effect chain of events
- The use of failure scenarios helps with failure representation and risk evaluation

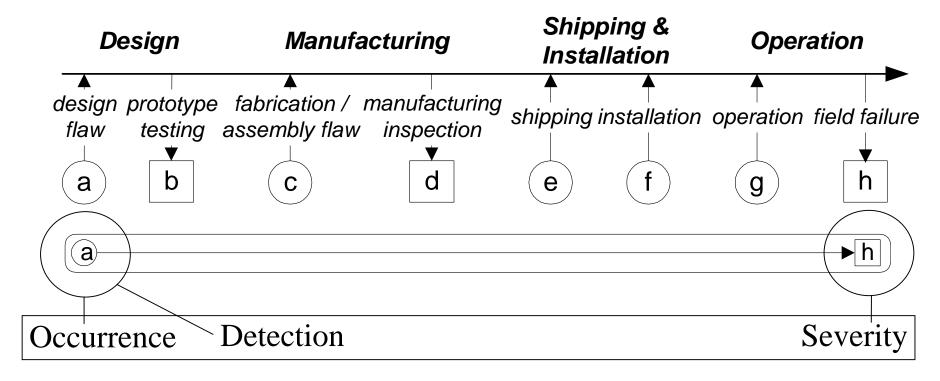


S. Kmenta 1/22/2002 21 of 32

Failure Scenarios

Scenarios have different probabilities and consequences

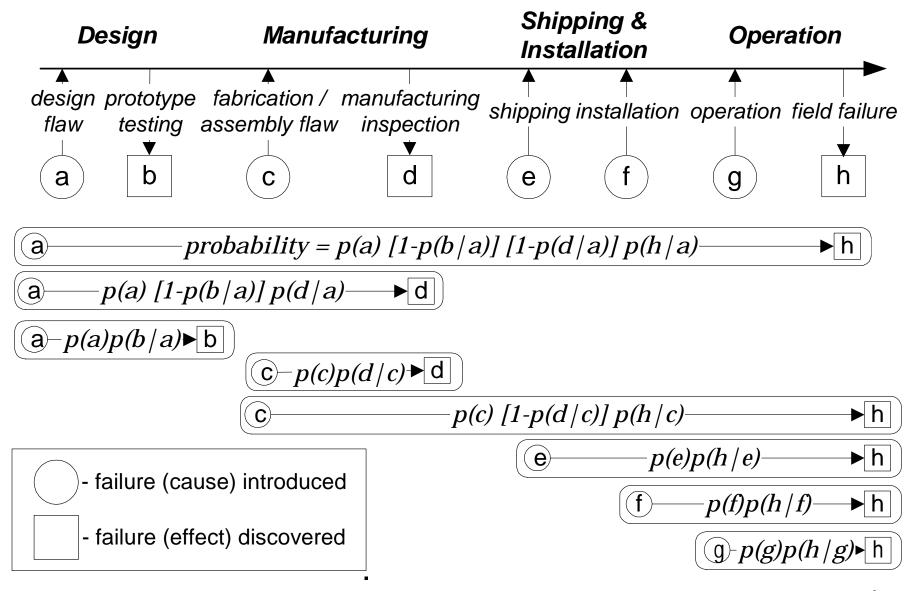
Scenario 1: probability 1, consequence 1



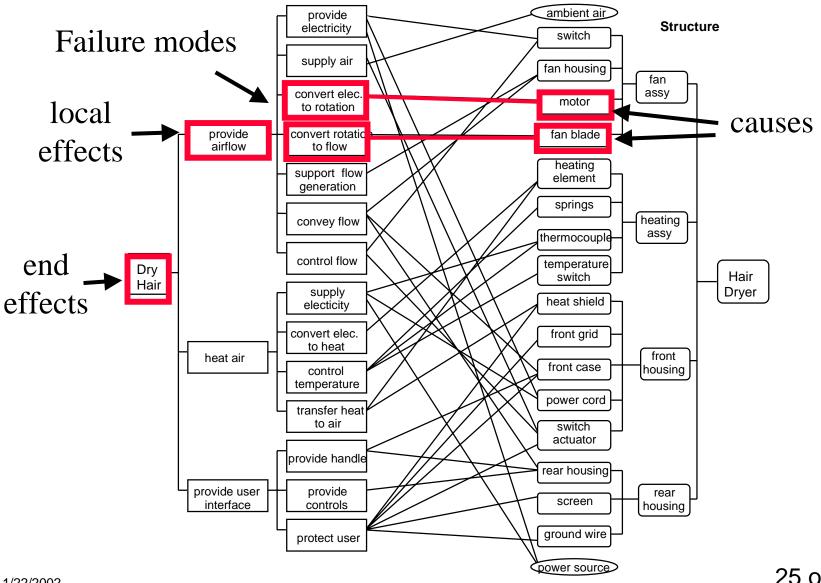
Scenario 2: probability 2, consequence 2

Conventional FMEA might list as one Failure Mode & one RPN Rating

S. Kmenta 1/22/2002 22 of 32


Traditional Failure "Modes"

 $RPN = O \times S \times D$

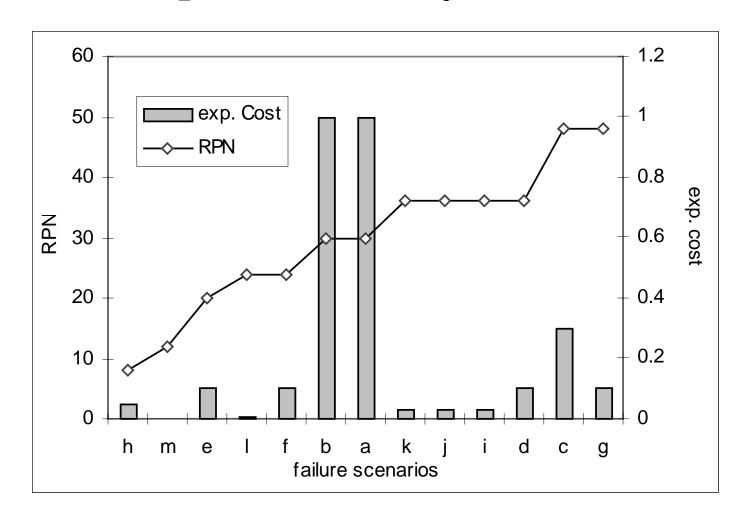

- failure (cause) introduced
- failure (effect) discovered

Life Cycle Failure Scenarios

Generating Failure Scenarios

Function-Structure Map for Hair Dryer

25 of 32 S. Kmenta 1/22/2002


Example: Hair Dryer FMEA

Scenario	Function/ Requirement	Potential Failure Modes	Potential Causes of Failure	Probability	Occurrence	Local Effects	End Effects on Product, User, Other Systems	Cost	Severity	Detection	exp. Cost	RPN
ď	convert electric power to rotation	no rotation	motor failure	0.001	6	no air flow	hair not dried	100	8	1	0.1	48
С	convert rotation to flow	no fan rotation	loose or worn fan connection to rotor	0.01	8	no air flow	hair not dried	30	6	1	0.3	48
d	convert electric power to rotation	no rotation	obstruction impeding fan	0.0001	4	motor overheat	melt casing	1000	9	1	0.1	36
i	supply electricity to fan	no electricity to fan motor	broken fan switch	0.001	6	no air flow	hair not dried	30	6	1	0.03	36
j	supply electricity to fan	no electricity to fan motor	loose switch connection	0.001	6	no air flow	hair not dried	30	6	1	0.03	36
k	supply electricity to fan	no electricity to fan motor	short in power cord	0.001	6	no air flow	hair not dried	30	6	1	0.03	36
a	convert electric power to rotation	low rotation	hair/foreign matter increasing friction	0.1	10	reduced air flow	inefficient drying	10	3	1	1	30
b	convert electric power to rotation	no rotation	obstruction impeding fan	0.1	10	no air flow	hair not dried	10	3	1	1	30
f	supply electricity to fan	no electricity to fan motor	no source power	0.01	8	no air flow	hair not dried	10	3	1	0.1	24
	convert electric power to rotation	low rotation	rotor/stator misalignment	0.0001	4	reduced air flow	hair not dried	30	6	1	0.003	24
e	supply electricity to fan	no electricity to fan motor	short in power cord	0.00001	2	no air flow	potential user injury	10000	10	1	0.1	20
m	supply electricity to fan	low current to fan motor	low source power	0.0001	4	reduced air flow	inefficient drying	10	3	1	0.001	12
h	convert electric power to rotation	low rotation	rotor/stator misalignment	0.01	8	noise generation	noise generation	5	1	1	0.05	8

• 13 scenarios rated for probability/cost, Severity/Occurrence

S. Kmenta 1/22/2002 26 of 32

Example: Hair Dryer FMEA

RPN gives different priority than expected cost

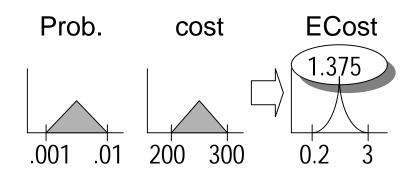
Deployment of Expected Cost in FMEA

Relate ranges of probability and cost to a general scale

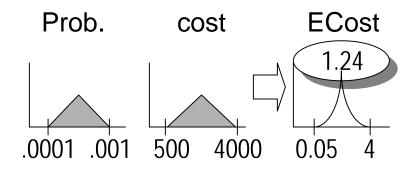
Probability	from	to
VL	0	10e-5
L	10e-5	0.001
M	0.001	0.01
Н	0.01	0.1
VH	0.1	1

Cost	from	to
VL	0	50
L	50	500
M	500	5,000
Н	5,000	50,000
VH	>50,000	-

$$Prob. = Low$$


$$= (\underline{10e-5 + 0.001}) \times (\$\underline{500 + \$5000})$$
2

$$= $1.39$$


Once tables & ranges are defined, one can use: (estimated probability) × (estimated cost)

Another Expected Cost Strategy

- Estimate probability range (low, nominal, high)
- Estimate failure cost (low, nominal, high)
- Calculate expected cost distribution
- Rank risks according to mean expected cost

Failure Scenario A

Failure Scenario B

Challenges

- Cost & probability data is difficult to estimate w/o data
- There is some aversion to using probability and cost estimates
- 1-10 scales for Occurrence, Detection, & Severity is familiar and "quick"
- Many FMEA standards and software use RPN

RPN is the industry standard for FMEA

Advantages

- Analyze Failure Modes by Life-cycle "Scenarios"
 - Clarifies the cause / end-effect relationship
 - Takes the ambiguous "Detection" out of the picture
- Expected cost is an accepted measure of risk
 - Cost and probability terms are consistent
 - Expected cost ties FMEA to \$\$
- Engineers can compare failure costs to solution cost to minimize life cycle costs
 - Reliability vs. serviceability vs. better diagnostics

Using Expected cost in scenario-based FMEA presents a more useful representation &

evaluation of "risk",

Concluding Remarks

Applications & Workshops

- Training Workshops given at GE CR&D, Toshiba 6 sigma
- Integral part of Stanford's graduate dfM curriculum (me217.stanford.edu)
- On-going research project: Design & costing of next linear collider (Stanford/SLAC project)

Acknowledgments

- Prof. Kos Ishii, Stanford University (ishii@stanford.edu)
- GE Aircraft Engines, especially Gene Wiggs
- Department of Energy, Integrated Manufacturing Fellowship

Questions??