

# Failure Mode Effects Analysis

Geoff Vorley
Quality Management & Training



### Introduction

- Logical technique
- To identify and eliminate causes of failure.
- A sequential and disciplined approach
- To establish the modes of failure
- The effects of failure
- Used on Product, Devices, Systems, or process.
- Establish the risks
- Ranked in order of their importance



## Objectives

- Understand the importance of a preventive approach
- Understand the importance of FMEA
- Understand how to conduct a Product & Process FMEA
- Understand individual role & responsibilities for FMEA



### Who is in Attendance?

- Anyone conducted an FMEA before?
- Anyone completed any Risk Analysis Procedure?



#### Course Overview

- Quality Assurance
- Why FMEA
- Overview of FMEA
- Video
- Procedure for Product FMEA
- Case Study Product FMEA; (worked example 1), (BioC worked example 2)
- Procedure for Process FMEA; (BioC worked example 3)
- Case Study Product FMEA (Delegate example 4)
- Case Study Process FMEA (Delegate example 5)
- FMEA in Context + Video
- Other Risk Analysis Techniques
- Review of FMEA
- Review of Course



#### The reason for FMEA

- Right first time
- Identifies any inadequacies in the development of the Product
- Tests and trials may be limited to a few products
- Regulatory Reasons
- Continuous Improvement
- Preventive (not corrective) approach
- Team Building
- Required by Procedures



#### FMEA provides the potential

- Reducing the likelihood of Customer Complaints
- Reducing the likelihood of campaign changes
- Reducing maintenance and warranty costs
- Reducing the possibility of safety failures
- Reducing the possibility of extended life or reliability failures
- Reducing the likelihood of Product Liability claims



#### Responsibility for FMEA

- Researcher, Developer, Designer, Manufacturer or Quality Person
- The person who knows the system, product or process best.
- Team exercise



#### Benefits of the application of FMEA

- Identifying potential and known failures
- Identifying cause and effect of failure mode
- Risk factors
- Following up action
- Providing documentation for quality audit
- Checking on the decisions +ive & -ive
- Making clear the accountability
- Identifying potential and known failures
- A tool used for reviews
- Continuous improvement
- Part of the validation or verification



#### Limitations of FMEA

- Resource in performing
- Key product failures overlooked
- No action is taken
- Not following the disciplines



#### **Procedures for Product FMEA - 1**

- Input/Output Documents
- Logistics
- The product, system, sub-system or item
- Header Details
- Product, Part, Process or System
- Describe the function
- Describe the anticipated failure mode
- Describe the effects of failure
- Describe the cause of failure
- Identify the relevant documentation



## FMEA Blank Form

| Product: Component Name: Component Number: Revision Number: Effect on Purchasing: Yes/No |          |                          |                   |                  |                      |   |   | Developer: Dates: Report Number: Sheet of Sheets: Revision Number: Last Updated: |   |                             |  |  |  |
|------------------------------------------------------------------------------------------|----------|--------------------------|-------------------|------------------|----------------------|---|---|----------------------------------------------------------------------------------|---|-----------------------------|--|--|--|
| Product , Device ,<br>Process or<br>system name &<br>number                              | Function | Possible Failure<br>Mode | Effect of Failure | Cause of failure | Control<br>Procedure | 0 | S | D                                                                                | R | Remarks/<br>Action<br>taken |  |  |  |
|                                                                                          |          |                          |                   |                  |                      |   |   |                                                                                  |   |                             |  |  |  |



#### **Procedures for Product FMEA - 2**

- Estimate the frequency of occurrence of the failure
- Estimate the severity of failure
- Estimate the detection of failure
- Calculate the risk priority number
- Corrective action
- Follow up



## Estimate the frequency of occurrence of the failure

• 1

= 10<sup>-6</sup> Chance of occurrence

**2** & 3

= 10<sup>-5</sup> Chance of occurrence

4 & 5

= 10<sup>-4</sup> chance of occurrence

6 & 7

= 10<sup>-3</sup> chance of occurrence

**8** 

= 10<sup>-2</sup> chance of occurrence

• 9

= 10<sup>-1</sup> chance of occurrence

**•** 10

= 100% chance of occurrence



## Estimate the severity of failure

- 1 = unlikely to be detected
- 2 = 20% chance of a customer return
- $\bullet$  3 = 40% chance of a customer return
- 4 = 60% chance of a customer return
- 5 = 80% chance of a customer return
- 6 = 100% chance of a customer return
- 7 = failure results in customer complaint
- 8 = failure results in a serious customer complaint
- 9 = failure results in non-comp' with statutory safety std
- 10 = failure results in death



### Estimate the detection of failure

1 =

failure will be detected

• 2 =

80% chance of detection

• 3 =

70% chance of detection

• 4 =

60% chance of detection

5 =

50% chance of detection

**6** =

40% chance of detection

• 7 =

30% chance of detection

8 =

20% chance of detection

• 9 =

10% chance of detection

10 =

no chance of detection



### Other Risk Assessment Techniques

- Hazard and Operability study (HAZOP)
- Hazard Analysis Critical Control Points (HACCP)
- Failure Mode and Effects Analysis (FMEA) sometimes known as Failure Mode, Effects and Criticality Analysis (FMECA)
- Fault Tree Analysis
- Process Decision Programme Chart







# Case Study Table

| COM<br>COM     | UCT:<br>PONENT<br>PONENT<br>NUMBE | NUMBER:                                                                                | Automatic Trans<br>Shaft & Lever A<br>Q.765             |                                                                                            | GINEER: B.Mo SHEET: ISSUE NUMBER:                                                                                    |   | of 1 | LA | ST | UPDATED: 30 April 1998                                                                    |      |
|----------------|-----------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---|------|----|----|-------------------------------------------------------------------------------------------|------|
| or Sys         |                                   | Function                                                                               | Possible<br>Failure Mode                                | Effects of Failure on System                                                               | Cause of Failure<br>(Failure Mode)                                                                                   | O | S    | D  | R  | Action to Eliminate or Reduce                                                             | Risk |
| Manua<br>assem | l lever<br>bly                    | Transmit manual selector motion from external linkage to manual valve and park linkage | 1. Plastic lever<br>breaks                              | No drive<br>Locked in park                                                                 | Overload on lever when disengaging park on grade. Inferior plastic material. Brittle when cold. Damaged in handling. | 3 | 10   | 9  |    | Redesign lever-thicker material a strengthening ribs to carry 100% overload. In Progress. |      |
|                |                                   |                                                                                        | 2. Wear at hole in lever                                | Excessive free-play in manual linkage.                                                     | High unit loading at rod.<br>Inferior material.                                                                      | 2 | 2    | 10 | 40 | Assemble with lubricant.                                                                  |      |
|                |                                   |                                                                                        | 3. Loose fit at shaft and lever serration               | Excessive free-play in linkage. Lever slides off serration, cannot select drive positions. | Thermal set of plastic.  Inadequate press-fit interference.                                                          | 2 | 10   | 9  |    | Install load sensor on assembly p to detect light press fit. Status open.                 | ress |
|                |                                   |                                                                                        | 4. Mis-orient<br>lever to shaft<br>flat in<br>assembly. | Improper linkage geometry.<br>Cannot select low.<br>Cannot select park.                    |                                                                                                                      |   |      |    |    |                                                                                           |      |