LECTURE 9

FMEA and its potential for application in LCE; by Jae Lee

FAILURE MODES AND EFFECTS ANALYSIS (FMEA)

Jason Lee
Mechanical Engineering Graduate Student
Queen's University

January 28, 2002

- What is FMEA?
- What does FMEA achieve?
 - Greater safety and environmental integrity
- What are the main elements of an FMEA?
 - Function and Performance Standards
 - Functional Failures
 - Failure Modes
 - Failure Effects
 - Failure Consequences
- What does this mean as a graduating engineer?

WHAT IS FMEA?

• FMEA is a integrated component of Reliabilitycentered Maintenance

Reliability-centered Maintenance (RCM) is a process used to determine the maintenance requirements of any physical asset in its operating context

- RCM process entails asking seven questions!
 - What are the functions and associated performance standards of the asset in its present operating context?
 - In what ways does it fail to fulfil its functions?
 - What causes each functional failure?
 - What happens when each failure occurs?
 - In what way does each failure matter?
 - What can be done to predict or prevent each failure?
 - What should be done if a suitable proactive task cannot be found?

• SO WHAT DOES THIS HAVE TO DO WITH BEING ENVIRONMENTALLY CONSCIOUS?

WHAT DOES FMEA ACHIEVE?

First Generation (B)

Fix it when it broke

Second Generation (A)

- Higher plant availability
- Longer equipment life
- Lower Costs

Third Generation (E, F)

- Higher plant availability and reliability
- Greater safety
- Better product quality
- No damage to the environment
- Longer equipment life
- Greater cost effectiveness

- Greater safety and environmental integrity: RCM considers
 the safety and environmental implications of every failure
 mode before considering its effects on operation. This
 means that steps are taken to minimize all identifiable
 equipment-related safety and environmental hazards, if not
 eliminate them altogether. By integrating safety into the
 mainstream of maintenance decision-making, RCM also
 improves attitudes to safety.
- Improved operating performance (output, product quality and customer service)
- Greater maintenance cost-effectiveness
- Longer useful life of equipment

FUNCTIONS and FUNCTIONAL FAILURES

- Understand the Asset's Operating Context
 - Environmental Standards
 - Quality Standards
 - Batch and Flow Processes
 - Redundancy
 - Shift arrangements
 - Repair Time
- Function
 - Determine what its users want it to do
 - Ensure that it is <u>capable</u> of doing what its users want to start with

• **Primary Function** – summarizes why the asset was acquired in the first place

For instance – a primary function of a car exhaust system might be to draw out no less than X micrograms of a specified vaporous waste material, from an engine at a rate of Y cubic meter / second.

• **Secondary Function** – which recognize that every asset is expected to do more than simply fulfil its primary functions. These functions are in areas of environmental integrity, safety/structural integrity, control/containments/comfort, appearance, protection etc...

For instance – a secondary function of a car exhaust system might also be the subject of environmental restrictions dealing with noise.

"to emit no more than X dB measured at a distance of Y meters behind the exhaust outlet"

- Functional Failure is defined as the inability of any asset to fulfil a function to a standard of performance which is acceptable to the user
- It is accurate to define failure in terms of the loss of specific functions rather than the failure of an asset as a whole.

For instance – the car exhaust can drawing out its vaporous waste material but not its exceeds its specified noise level.

FAILURE MODES AND EFFECTS ANALYSIS

- Failure mode is any event which causes a function failure
 - Description should contain enough detail for it to be possible to select an appropriate failure management strategy
- Failure effects describes what happens when a failure mode occurs
 - "what happen" not "how does it matter?"
 - What evidence (if any) that the failure has occurred
 - In what ways (if any) it poses a threat to safety of the environment
 - In what ways (if any) it affects production or operations
 - What physical damage (if any) is caused by the failure
 - What must be done to repair the failure
- EXAMPLE OF FMEA See Handout

SAFETY AND ENVIRONMENTAL HAZARDS

- Some environmental failure effects are
 - Increase risk of fire or explosion
 - The escape of hazardous chemicals (gases, liquids or solids)
 - Pressure bursts (vessels and hydraulic systems)
 - The growth of bacteria
 - Ingress of dirt into food or pharmaceutical products

• FMEA can help eliminate or minimize these effects

WHAT DOES THIS MEAN TO THE ENGINEER?

- Methods in predicting failures
 - Vibration analysis
 - Infrared analysis
 - Developing real-time diagnostic system
- Determining the asset's functions and performance standards
- Providing sources of Information about Modes and Effects
 - Designer, Manufacturer, vendors of the assest
- Bring Environmental Issues to the Forefront!!

Finally the end of the lecture

Thank you for your attention,

REFERENCES

- Reliability-centered Maintenacne II John Moubray
- FMEA Info Centre http://www.fmeainfocentre.com/index.htm
- FMEA Methodology http://www.fmeca.com/