

SERIOUS

DELIVERABLE D2.2
Best practices of Evolutionary SW

Development

•••

Project number: ITEA 04032

Document version no.: WP2 Deliverable 2.2, Final Version

Edited by: PHI / CAL

ITEA Roadmap domains:

Major: Services & software creation

ITEA Roadmap categories:

Major: Software engineering

Minor: System engineering

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 2 of 123

HISTORY

Document
version #

Date Remarks

V0.1 23-3-2007 Draft chapter 1 and 2

V0.2 24-4-2008 Second draft all chapters

V0.3 05-05-2008 Added process pattern look-up table

V0.4 06-06-2008 1
st

 review

V0.5 15-06-2008 Incorporated review comments

V0.6 20-06-2008 2
nd

 review

V0.7 07-07-2008 Incorporated all review remarks

V1.0 12-08-2008 Final Version

V1.1 29-08-2008 Final Version, some textual consistency changes

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 3 of 123

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY ... 5

2 CONCEPT OF PROCESS PATTERNS ... 6

2.1 Evolutionary Development Process Patterns .. 6

2.2 Describing Evolutionary Process Patterns .. 6

2.3 Process Pattern template .. 6

3 OVERVIEW OF PROCESS PATTERNS ... 9

4 REQUIREMENTS RELATED PROCESS PATTERNS .. 11

4.1 Rapid UI prototyping pattern .. 11

4.2 Requirement Impact Description (RID) pattern.. 12

4.3 Feature description pattern .. 19

4.4 Light analyses of a Feature pattern .. 21

4.5 Delta Specifications pattern .. 23

4.6 Manageable requirements traceability ... 31

5 DESIGN RELATED PROCESS PATTERNS ... 38

5.1 Critical Computer Resource Management pattern .. 38

5.2 Multidisciplinary product configuration management pattern 41

5.3 Software FMEA pattern ... 44

5.4 Security and Privacy pattern... 49

6 CODE RELATED REALIZATION PROCESS PATTERNS 54

6.1 Continuous Builds Pattern .. 54

7 TESTING RELATED PROCESS PATTERNS ... 56

7.1 Risk based Testing pattern ... 56

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 4 of 123

7.2 Incremental Testing pattern .. 60

7.3 Technical Review pattern .. 64

7.4 Verification & integration in incremental development pattern 67

8 SUPPORTING PROCESS RELATED PATTERNS ... 72

8.1 Incubators for reducing project risk pattern .. 72

8.2 Incremental Configuration Management pattern ... 75

8.3 Defect Rootcause Analyses pattern ... 80

8.4 Proactive Quality Assurance pattern ... 87

8.5 Quality Assurance driven Process Improvements pattern 91

8.6 Estimation in evolutionary SW development pattern 97

8.7 Baseline auditing and configuration status accounting pattern 106

8.8 Software Development Stream pattern .. 112

8.9 Product baseline overview pattern ... 118

9 REFERENCES .. 123

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 5 of 123

1 Executive Summary

The SERIOUS project focuses on maximizing the long-term value of an investment
made in software development by utilizing evolutionary software development models
aimed at prolonging the lifetime and improving the quality of a software product. This is
done by taking into account the requirements of the whole lifecycle of the product from
the beginning of the development.

Most software development models focus extensively on the initial development phase,
not taking into account the requirements for the period from the delivery to the end of the
product's lifecycle. Evolutionary software development models, as defined in the
SERIOUS project, are methods that are aimed at combating software quality
degradation, usually beginning right after the initial development cycle has ended.

The focus of the SERIOUS project is on practical methods that are applicable in real-life
development of software intensive systems, most of which have been in production long
before the project and which may still last several years or decades before being
replaced by whole new systems. It is therefore important that the evolutionary
development models can be applied to improve the quality of both new systems to be
developed from scratch and existing systems already in production.

Upon investigation of the development models that are currently available, within both
industry and academia, it became obvious that none of the current models were able to
meet the goals of the project. Although the so-called agile software development models
generally allow for the flexibility required for software to evolve during its lifecycle, thus
contributing to the quality of the software even after its initial release, even they did not
meet the criteria required to be effectively applied to the ongoing software development
processes.

The available models did not take into account the current trend of distributed software
development crossing organizational boundaries or the increasing complexity caused by
more and more software components interacting and integrating with each other.

In order to achieve practical results, it was therefore decided that instead of trying to
identify a single model which would meet the goals of the SERIOUS project, it would be
better to gather a set of tried and tested best practices which have been successfully
applied in real life software development projects from the Serious partners.

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 6 of 123

2 Concept of Process Patterns

The Industries Best Practices in this document are described as Evolutionary Software
Development Process Patterns, further referred as Process Patterns.
A Process Patterns is a universal way to describe re-usable best practices of a
development process. It is developed in analogy to Object Oriented Design patterns.
A Process Pattern is a standard (process) modular solution for implementing
evolutionary development processes.

2.1 Evolutionary Development Process Patterns

As part of the SERIOUS project we have developed a notion of process patterns in the
context of evolutionary development. The main idea behind these process patterns is to
stimulate exchange of knowledge between different industries. Practices are gathered
and more or less isolated in order to facilitate the incorporation of the process pattern in
another development process (without having to change too much in the existing
process or organization). Changing organizational processes is maybe the hardest thing
to achieve. We hope to realize fast and clear results by applying evolutionary process
patterns in an organization.

2.2 Describing Evolutionary Process Patterns

How do we describe evolutionary process patterns? Currently used graphical notations,
as in Object Oriented Design Patterns, while important and useful, aren't sufficient. They
simply capture the end product of the design process as relationships between classes
and objects. To reuse the evolutionary process, we must also record the decisions,
alternatives, and trade-offs that led to it. Concrete, proven examples are important too,
because they help you see the design in action.
In the Serious project, we have developed a template for describing Process Patterns.
The template lends a uniform structure to the information, making process patterns
easier to learn, compare, and use.
In the next paragraph, the layout of this template is given
With respect to the size of a process pattern, the following rule of thumb applies: It
should not contain more than 4 to 5 pages. If more pages are needed to describe the
Process Pattern, the subject being covered maybe too large / less modular. In that case
it is advised to reconsider the scope of the Process Pattern.

2.3 Process Pattern template

2.3.1 Pattern Name and Classification

 Pattern Name and Classification (Guideline: Couple of words that conveys the
essence of the pattern and that becomes part of the vocabulary

2.3.2 Intent

 Some sentences describing the intent of the pattern

 What does the pattern do?

 What is its rationale and intent?

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 7 of 123

 What issue or problem does it address?

2.3.3 Also Known As

 Other names of the pattern

2.3.4 Motivation

 A scenario that illustrates the problem (from experiences)

 How the pattern solves the problem

 (Guideline: 1/2 page)

2.3.5 Applicability

 What are the situations in which the pattern can be applied? E.g. in which kind of
process could it fit, in which it will certainly not fit (in terms of e.g. used process,
organization, particular product aspects).

 What are examples of poor performance that the pattern can address?

 How to measure whether it is successful?

 How can you recognize these situations?

 (Guideline: Couple of bullets)

2.3.6 Structure

 A graphical presentation of the pattern, or some plain text

 Maybe UML picture or flow diagram

2.3.7 Participants

 Roles/People?

 Other processes (e.g. outside development)?

 Explain which people and other processes play a role in the pattern
(Guideline: 1/2 page list)

2.3.8 Collaborations

 How the participants collaborate to carry out their responsibilities

 (Guideline: 1/2 page)

2.3.9 Consequences

 How does the pattern support its objectives?

 What are the trades-off and results of using the pattern?

 (Guideline: 1/2 page)

2.3.10 Implementation

 What pitfalls, hints, or techniques should you be aware of when implementing the
pattern?

 (Guideline: 1/2 page)

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 8 of 123

2.3.11 Sample

 Provide fragments that illustrate how you might implement the pattern. Typically
provide examples of documents, procedures etc.

 (Guideline: 1 page)

2.3.12 Known Uses

 Examples of the pattern found in real systems. Give for instance examples of
organizations that applied the process pattern and provide for instance some
statistics about the frequency of use. Also experiences when someone introduced
the process pattern in an existing (other) development process is important.

 (Guideline: 1/2 page)

2.3.13 Related Patterns

 What patterns are closely related to this one?

 What are important differences?

 With which other patterns should this one be used?

 (Guideline: Few sentences per related pattern)

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 9 of 123

3 Overview of Process patterns

 Overview available Process Patterns
 Pattern Keywords

Requirements related patterns

 Rapid UI prototyping Rapid UI prototyping method replaces early written
software specifications with a “fully working” HTML
prototype. Agile method,

 Requirements Impact
description

Requirement Impact Description (RID), PRES (Project
Requirements Sheet)

 Feature description high-level system requirements, customer
requirements

 Light Analysis of a
feature pattern

First Analysis, Initial Analysis, Initial assessment of a
feature, Budgets estimates

 Delta SRS & System
overview (incremental
requirements
documentation)

Requirement Impact Description (RID), requirements‟
gathering, re-used components, adding isolated
features, System Overview, Delta System
Requirement Specification, impact on existing
requirements and design, define incremental
requirements, evolutionary product development

 Manageable
requirements
traceability.

requirements traceability, Bidirectional requirements
traceability , Traceability Matrix, Unit Verification

Design related patterns

 Critical Computer
Resource Management

CPU memory, CPU capacity, disk space, object
oriented languages, Field Programmable Gate Arrays,
On Board Controllers, Network Processors, CCR
requirements, CCR estimates, Capability Maturity
Model (CMM), Capability Maturity Model Integration
(CMMI)

 Multidisciplinary product
configuration
management

Multiple view points,Conceptual Product Structure,
Commercial Product Structure, Engineering Product
Structure, Manufacturing Product Structure, Customer
Support Product Structure

 Software failure mode
and effect analysis

Increase product quality and reliability, identification of
failures, pre-design step

 Security and Privacy
Pattern

Personal data, intellectual property, security/privacy
requirements, Product Security Leadership Council,
OCTAVE

Code related realization patterns

 Continuous Builds software builds, quality of the software, effectiveness
of the development, critical errors, agile method

Testing related patterns

 Risk Based Testing
Pattern

Product Risk Analysis, total costs of defects, Product
Test Risk Matrix

 Incremental testing-
Master Integration
Diagram

“integration is leading” approach

 Technical Review Methodic way to assess the quality of your

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 10 of 123

deliverables

 Verification & integration
in incremental
development

Integration plan (IP), Master Test Plan (MTP), System
Verification Specification (SVS), Supported
Configurations Specification (SCS), V-model, Fade in /
Fade out operations, pre production models,
Configuration control, Integration / Testing,

Supporting process related patterns

 Incubator for reducing
project risk

reducing project risk, lifecycle development, Pre-
proposal and proposal phases, Validation/review
phase, project launching, project establishment,

 Incremental
Configuration
Management

configuration management aspects, Software
Components, configuration items, product stability &
quality, risk reduction, timing constraints, Quality levels
for a CI, product archive remains stable

 Defect root cause
analysis

Determine the weaknesses, problem reports, Fight the
cause, Learn from the mistake, Prevent defects,
Safety based root cause analysis, Production based
root cause analysis, Process based root cause
analysis, System based root cause analysis, Data
collection, Pareto, Four-blocker” sheet, Phase related
root causes, Human related root causes, Fish-bone
diagram(Ishikawa diagram)

 Proactive Quality
Assurance

Process Quality Assurance, Product Quality
Assurance, Project Quality Assurance, Quality
Management

 Quality Assurance
driven process
improvements

Process/Product/Project/Software/Development
Quality Assurance, track the non-compliances to
closure, non-compliances, Plan Do Check Act
(PDCA).

 Effort estimation in
evolutionary SW
development

Analogy Method, Fuzzy Logic, Matrix Sizing Method,
Standard Component Sizing Method, Change Sizing,
Wideband Delphi Technique, Selecting size metrics

 Baseline auditing and
configuration status
accounting

Configuration auditing, Status accounting,
Configuration Management Plan, Analyzing build
results, Maturity grid

 Software defelopment
stream pattern

Multiple development, Evolutionary development,
Multi-site development, Development of an embedded
system, Cascade model

 Product baseline
overview

Configuration management at the product level,
Configuration Items

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 11 of 123

4 Requirements related Process Patterns

4.1 Rapid UI prototyping pattern

4.1.1 Pattern Name and Classification

The Rapid UI prototyping method replaces early written software specifications with a
“fully working” HTML prototype. It enables the software architect to visualize the
interactions and potential logical problems in the software from early on.

4.1.2 Intent

Whilst rapid UI prototyping is a powerful tool to communicate and sell the software
internally and externally, it also enables rapid software design by reducing the amount of
initial written documents and the time spent on updating the documents. Rapid UI
prototyping can produce the final user interface as a side product of the specification
phase.

4.1.3 Motivation

The initial software specification phase takes a lot of time and resources with no
guarantee of the applicability of the initial design documents. Replacing the early written
design documents with rapid prototyping accelerates the software development and
enhances the quality of the software via better internal and external communications.

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 12 of 123

A picture is worth a thousand words, a “working” UI prototype is worth more than a thousand words.

4.1.4 Applicability

The usefulness of the method increases when the complexity of the software increases.
Also, the benefits increase as the number of people/organizations involved in the
development process increases. The method is not suitable for software with no user
interface. It also does not benefit simple design processes.

4.1.5 Participants

The participants include software architects, software developers, UI designers, product
manager, marketing, etc. personnel, and internal/external customers.

4.1.6 Collaborations

Once the customer together with marketing and product manager have decided on the
functionality, the software architect and UI designer produce the prototype which will
then be distributed to all parties involved for further actions.

4.1.7 Consequences

Rapid UI prototyping speeds up the development process and eases the
communications between the participants. Being an agile method, it highlights potential
problems in the design and enables to address them early on. It should be noted, that
the method requires a competent UI designer to work with the software architect.

4.1.8 Implementation

The method may lead to overoptimistic expectations from the customer. They may feel
they have seen the finalized product when they actually have seen the prototype. The
method may be difficult to implement in organizations with narrow roles/competences.

4.1.9 Known Uses

Although there most probably are other organizations utilizing a similar approach to
software development, Calassa Labs is the only known user of the rapid UI prototyping
method.

4.2 Requirement Impact Description (RID) pattern

4.2.1 Pattern Name and Classification

Requirement Impact Description helps identifying the impact of several stakeholders
requirements on the scope of the project.

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 13 of 123

4.2.2 Intent

Describe a high level requirement in an early stage of development focusing on its
impact on existing requirements and design and provide a rough estimate of the effort.

4.2.3 Also Known As

PRES (Project Requirements Sheet)

4.2.4 Motivation

Determine the impact on requirements and design of adding isolated features to the
system without the overhead of updating and formalizing large documents. This speeds
up the initial phases of the project because it supports the discussion and decision
making process regarding the contents of the projects instead of just doing paperwork.
Writing and updating the Requirements Specification for an entire system is often a lot of
work when the system is big and complex. Especially in organizations where these
changes occur frequent. Every update big or small of a System Requirements
Specification brings overhead with it for reasons of configuration management. When
changes are frequent the amount of overhead becomes un-workable. Sometimes
requirements are scattered over many different documents which makes it even more
complex to handle.
Changes also have to be explicitly recognizable among lots of other texts in the System
Requirements Specification(s) because the changes may have to be removed again
when the feature is removed from the project.
When a feature is added changes have to be done at several places in the SRS. When it
is decided that the feature does not fit in the project and has to be removed then at all
the places in the SRS the applicable text would have to be removed. It might be the case
however that the text in the requirements (or design) has to stay because of some other
feature that needs the change in requirements or design. When this should be tracked in
one requirements of design it would be difficult to keep track of the necessary changes.

The following drawing gives a graphical presentation of this situation:

System

F3F1

F2

O1 O2

Figure 1: Overlapping Requirements.

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 14 of 123

The oval represents the entire requirements specification. The squares F1 - F3
represent the RID of features 1-3 and the impact they make. The areas O1 and O2
represent the overlapping impact on the requirements specification of respectively F1
and F2 and F2 and F3. When e.g. feature F1 is removed then the changes that are
needed from feature 2 are still addressed by the RID from feature 2. Only in case both
features are removed from the project the overlapping part also disappears as should
be. This is similar for the impact on design since the RID also addresses design issues.

In UML notation this would like this:

Sub design

impact

Sub System

requirements

impact

Resource

impact

Resources

Project

Existing sub

system

requirements

Existing system

design

Existing sub

system design

Impacts Impacts

Impacts

Impacts

Uses

Impacts

Uses

Controls

Existing system

requirements

System

requirements

impact

System Design

impact

Requirements

Impact Description

RID

Business

decision maker

The RID is placed in the centre of this UML drawing. The RID consists of impact
descriptions on system requirements and system design who at their turn consist of sub
system requirements and sub system designs. The RID also describes the impact on
those sub system requirements and designs. The RID also describes the impact (effort
estimation) on the (human) resources of the project. The RID provides the information
which the business decision maker needs.

4.2.5 Applicability

Use the Requirements Impact Pattern when,

 You are in the early requirements and design phases

 You deal primarily with more or less isolated requirements. (Not for for-instance
improving reliability or performance of an entire system).

 There is an existing system and system design with which you continue.

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 15 of 123

 Especially meaningful when the requirements list of the project is frequently
changing during the early phases.

4.2.6 Structure

In UML (sub section of the picture above):

Sub design

impact

Requirements

Impact Description

System Design

impact

System

requirements

impact

Sub System

requirements

impact

Resource

impact

Feature title; Title Project Name: Name Effort estimate: # hours

Author: name Date: Date Status: Status DocNR: DocNR

Reviewers: Name 1, Name 2, Name 3 … Name N.

 Authorizer: Name

Requirements Specifications Design Specifications

System

Purpose

 Intention of feature

General

 Brief descriptions of feature

System aspects

 Impact on requirements of system aspects.

 System

General

 General impact on system design.

System aspects

 Impact on design related to system aspects

Impacted Subsystems Impacted subsystems

Impacted subsystem x

 Requirements Impact

 Impacted subsystem x

 Sub system design impact

Impacted subsystem y

 Requirements Impact

 Impacted subsystem y

 Sub system design impact

Impacted subsystem z

 Requirements Impact

 Impacted subsystem z

 Sub system design impact

Rejected Requirements

 Subsystem requirements which cannot be included in the projects.

 Open issues

 List of open issues

4.2.7 Participants

The following people play a role when using the RID:

 The marketing department as representative of the customers plays a role in the
discussions regarding the market wishes for the features. They have to know the

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 16 of 123

value of the feature in the market in order to have a proper cost / benefit
discussion.

 The system designer or architect writes the RID because he is the person that
has enough overview to determine the impact of the feature on the requirements
and design. He also has to have an idea about the amount of effort that is
involved.

 The project leader is ultimately responsible for the content of his project within
the boundaries that are provided to him. The sub-project leader(s) are involved in
providing more detailed data regarding the impact on resources on the parts of
the project they are responsible for. They have discussions with the designers in
order to get the first order estimates.

4.2.8 Collaborations

The input of the participants as mentioned above is gathered by the project manager. He
collects all RID‟s for the project, does the math regarding the resources that are needed
in total and whether it fits within the constraints of the project. When such is not the case
the project manager starts the discussion regarding which features are out of the project
and which are in. The wishes of the marketing department have to be balanced against
the possibilities within development and against the (long term) benefits and commercial
value of the features.

4.2.9 Consequences

Since it is an iterative process we do not want to update the entire System Requirements
Specification or Design specification. Every project however has to end with a complete
set of documentation that is consistent within itself (the design has to match the
requirements) and with the implementation. This means that after all discussions
regarding the features that are to be delivered by the project the documentation has to
be made up to date. This has some annoying impact on the later phases of the projects
because then the effort has to be put in updating and finishing all the documentation. It
needs no arguing that this is not a popular task and therefore holds a risk towards this
project and especially its successors for whom the system documentation forms a base
for further development. Update of the system documentation has to take place in order
to be able to smoothly run the RID process of the next project. A list of RID cannot serve
as a requirements specification document.

4.2.10 Implementation

The RID is applied in the early phases of development (phase 2 out of the 5 phases) and
lose their meaning afterwards. This implies less effort regarding the configuration
management of the sheets and therefore less overhead.
The input is the base lined system specification and design from the previous project(s).
The RID serves as the „delta specification‟. Besides the RID also other forms of delta
specifications exists such as Delta SRS and System overview. They serve a similar
purpose but are merely in use in case of more correlated features and properties of the
system that are implemented by the project.
The Project Team decides which variant(s) are used in the project, taking into account
the stakeholder needs and the impact on the system.

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 17 of 123

Creating sheets takes 2-5 days including discussions. A RID is a 1 sheet paper which
makes editing easier.
Care should be taken to use isolated features of a manageable size i.e. in the order of
100 days to a few man-years. A project should contain a manageable amount of RID‟s
i.e. up to a maximum of 20.
Care should also be taken that the feature does not grow in size itself by adding are
removing requirements on the RID itself because this requires management of the RID‟s
and of the versions of the RID‟s which makes it much more complex.

4.2.11 Sample

Find below a sample of a RID:

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 18 of 123

M. Mermans

 Page 1
 2006 - 05 - 18 Philips Medical Systems

page 1

ExamCards SystemWide Project: Spica WBS: 300 days
Author: xxxx

Date:

Status: Concept DocNR: XJR -

 Reviewers:

,

Authorizer :

 Requirements Specifications

Design Specifications
 System

 Purpose
 Introduce viewing pages and overview protocols

 Extend the ExamCards mechanism for automatic /scheduled start of processing
jobs and easy starting of processing an d viewing packages, all of it as defined in
the EC - protocol.

 I mprove the ease of use of ExamCards
 General

 Introduce viewing pages in all contexts in NSUI.
 Introduce the ExecutionList in all contexts in NSUI.

(but only in the acquisition

case of GV)
 I nclusi on of NSUI - based processing and viewing steps in the Execution List.

 Automated or scheduled start of processing. For packages with user input, the
processing is only invoked after user input (e.g. after pressing the submit button) .

 Repeat processing from d ata - entries, or save in EC while the processing package
is used.

 Processing protocols can have a help text in the info browser
 Import/Export of EC’s, including processing & viewing steps.

 Define networking for all nodes (including DVD) using three levels: system, EC,
series.

 ExamCard editor on the host, but also offline. The editor has a SW - key. Parallel
usage of the same ExamCard is not supported.

 ExamCard can continue after a crash or system restart.
 Execution of ExamCards in batch mode for testing purpos es (e.g. TEIMA)

 IQ
 Performance

 Parallel start and execution of processing & scanning.
 Start of processing does not influence scanning. (<0.1 sec)

 Safety
 Option and Configuration

 SW - key R2
 Stierablility

 Upgrade of R1 EC’s
 BDAS & CDAS

System

 General
 U se a queue - mechanism for larger tasks, also in NSUI

 IQ

 Performance
 Package - Engine: Memory usage < ??, CPU < ??

 ExecutionList per case: Memory usage < ??, CPU < ??
 Viewing Pages Memory usage / expected number of open packages??

 Extention of Execution Archi tecture model needed
 Two way communication needed between processing jobs and EC to keep track of

the status.

 Safety
 Option and Configuration

 Stierablility
 Upgrade of EC’s during install

 Only add parameters to EC datamodel
 CDAS to BDAS downgrade of EC’s n eeded for application

specialists/Example Card creation.

 Magnet, Gradient, RF, Patient Support & Comfort, Physiology, Observation &
Communication, ACQ Control

Magnet , Gradient, RF, Patient Support & Comfort, Physiology, Observation &
Communicat ion, ACQ Control

 Viewing & Processing

 Processing protocols for some processing & viewing package which run in NSUI
 Search tool in EC (to find protocols)

 Start package automated as define in the ExecutionList
 EC in GV & NSUI environments should be easily recognized as being the same

thing.
 Multiple pages per context. Defined by o verview protocol s

 Print EC contents

Viewing & Processing

 Packages: ImageView, NeuroPerfusion, Diffusion, ImageAlgebra,
PicturePlus & BreastPerfusion.

 Platform
 The per formed EC (including the steps to be performed) can be saved/retrieved

from DVD/PACS/PatientDB.
 Status of an Exam/ExamCard must be known, also on 2 nd WS or after restart.

 Protect EC contents (password protected)
 Backup/Restore EC database

Platform

 The pe rformed EC is present in the patient DB
 ?

 Patient Administration

Patient Administration
 New parameters needed to keep the status of the ExamCard? Which?

 Blob needed to keep the complete EC.

 Rejected Rejected Requirements Requirements
 Editing of p ackage parameters in EC - UI (only offline supported)

 Printing automated from EC
 Planscan in NSUI

 Downgrading of ExamCards
 ?

Open issues

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 19 of 123

4.2.12 Known Uses

We know of only one usage of this specific sheet within Philips Medical Systems. The
RID is in use now for several years and satisfies the needs.

4.2.13 Related Patterns

Feature Description in use by Alcatel.

4.3 Feature description pattern

4.3.1 Pattern Name and Classification

A feature description is a detailed description of a certain feature, or a number of
related features, in terms of high-level system requirements.

4.3.2 Intent

The feature description translates the customer requirements in to more detailed high-
level system requirements that are suitable to serve as input for the product
development department. This document is also intended to unambiguously define what
the feature is all about.

4.3.3 Also known as

The pattern is abbreviated as FD. No other names for this or similar patterns known.

4.3.4 Motivation

In many cases the requirements or wishes from the customer with respect to a product
or solution are not suitable to be processed directly in the product development
department because of one or more of the following reasons:

 The requirements are subject to different interpretations depending on the person
that reads them.

 The technical part of the requirements is not enough elaborated.

 The requirements can not be placed in a broader overall business strategy.
The feature description deals with all of the above mentioned shortcomings.

4.3.5 Applicability

The pattern is used before the start of the processing of a feature within the product
development. It allows to make an initial objective assessment of the feature and to give
an estimate of the needed effort and cost.

4.3.6 Structure

The feature description is a MS-Word document with has a number of mandatory
explanatory chapters. Besides this, it also contains a table with the high-level system
requirements, each uniquely numbered in order to be referenced further during the
product life cycle.

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 20 of 123

4.3.7 Participants

Product Line Management together with the Product Architect produces the feature
description document.
Product Line Management are people that are interfacing with the customers, collecting
their requirements and place them in the product business strategy and roadmap.
Product Architects know the architecture of the system and provides the necessary
technical details for formulating the requirements in an unambiguous way. They also
make the initial assessment of the feature and provide the initial effort and cost
estimates.

4.3.8 Collaborations

Product Line Management and the Product Architect sit together and discuss the
customer requirement and how it affects the product. The result of this discussion is
described in the Feature Description document, which is then reviewed by all involved
parties.

4.3.9 Consequences

The goal of the pattern is to produce a stable high-level unambiguous requirements
document that is the base document for the development of a customer feature. It can
be considered as a contract between the Product Line Management organization and
the Development Organization with respect to the feature that is requested by the
customer.

4.3.10 Implementation

It is better to spend some limited time at the start of making customer requirements
clear, rather then discovering later in the development cycle that we are making the
wrong feature.

4.3.11 Sample

At the milestone where the requirement enters the product development and the
development life cycle begins, the feature description must be available and reviewed.

4.3.12 Known uses

The pattern is applied within Alcatel.

4.3.13 Related patterns

Requirement impact description in use at Philips.

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 21 of 123

4.4 Light analyses of a Feature pattern

4.4.1 Pattern Name and Classification

Light Analysis for a feature.

4.4.2 Intent

Determine a budget within which we expect a quality solution for the feature can be
developed, in a limited time frame (typical one to four days effort).

4.4.3 Also Known As

First Analysis / Initial Analysis / Initial assessment of a feature.

4.4.4 Motivation

If a customer requests a feature then we need to be able to determine the cost of the
feature in a limited time frame since the effort we spend to define this cost should be as
minimal as possible. At that point in time, we have not yet a commitment from the
customer, so the effort spent could be lost in case it turns out that the customer is not
interested any longer to invest in this feature based on the provided cost or for whatever
other reason.
The term “customer” should be considered in a wide scope. It could be an external
customer but also an internal customer in your company for instance the Product Line
Management department can be the internal customer that requests the cost of a feature
to the Research and Development department.
So the biggest challenge here is to balance the effort spent to perform the analysis
against the accuracy of this analysis.

Following steps are taken in this process to come to an estimated budget:

 Understand the real customer problem to be solved

 Define the criteria that acceptable solutions will have to satisfy
o Includes high level requirements
o Includes quality attributes (e.g. performance, availability, security,

modifiability, interoperability, …)
o Includes required effort to develop

 Enumerate possible solutions

 Evaluate and rank the solutions

 Derive a budget estimate with which it should be possible to build an acceptable
solution

 Do a first risk analysis

4.4.5 Applicability

This pattern can fit in all development processes.

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 22 of 123

4.4.6 Structure

The result of the pattern consists of a Word document or a PowerPoint presentation that
can be used to present the outcome of the Light Analysis.

4.4.7 Participants

 Product Line Management are people that are interfacing with the customers,
collecting their requirements and place them in the product business strategy and
roadmap.

 Product Architects know the architecture of the system. They make the initial
assessment of the feature and provide the initial budget estimates.

 Domain Architects know in depth the architecture of parts of the system.

4.4.8 Collaborations

Product Line Management collects the requirements from the external customer and
translates these into a feature request. The Product Architect performs the Light
Analysis and consults Domain Architects in different area‟s to get more details as
needed.

4.4.9 Implementation

Budgets estimates at this stage of the development cycle are not very accurate. One of
the pitfalls when applying this pattern is that these budget estimates are in most cases
too optimistic. This is because there are usually unforeseen issues that only come up
later in the development cycle when more details become available. If this happens then
one looses the possibility that when taking a few features together the budget
inaccuracies compensate for each other. So more realistic budget estimates should be
done, taking into account that unforeseen issues might pop up later.

4.4.10 Sample

The pattern can be applied as illustrated in the picture below.

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 23 of 123

Pre-LA Light Analysis Full Analysis Detailed arch

Feature acceptance

Feature
acceptance

Start

Development

Estimation accuracy

15-min

estimate

High level

Requirements

Architecture

Decisions

Focus on understanding
the problem and

criteria for acceptable

solutions

Focus on the solution
And verification that the
Solutions meets criteria

Set forward in previous phase

4.4.11 Known Uses

The pattern is applied in Alcatel-Lucent.

4.4.12 Related Patterns

The Feature Description pattern is related to this one. The intention of the Feature
Description pattern is to translate customer requirements into high-level technical
requirements. The intention of the Light Analysis pattern is to determine a budget to
develop the customer requirement. In most cases, both patterns are applied by the same
people.

4.5 Delta Specifications pattern

4.5.1 Pattern Name and classification

Delta Specifications (DELTA‟S) for writing incremental requirements and design
documentation.

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 24 of 123

4.5.2 Intent:

To be used to define incremental requirements for evolutionary product development
starting from the specifications of an existing product. The Delta‟s describe a high level
requirement in an early stage of development focusing on its impact on existing
requirements and design.

The delta specifications (DELTA‟S) are covered in three types of documents:
1. Delta SRS (Delta System Requirement Specification): focus on new/modified system
requirements
2. SO (System Overview): focus on technology (design) updates
3. PRES (Project Requirements Sheet): focus on adding isolated features (described as
separate pattern in paragraph 4.2)
The project team selects what type(s) of documents to use based on the project content.

4.5.3 Motivation

In an evolutionary development approach, a large number of components will be re-used
from the previous product and a limited number of components will have to be changed.
A project team working with delta requirements wants to focus on the management of
the changes. These changes are described in above documents relative to the previous
product specifications. The previous product is described in the System Requirement
Specification (SRS) & System Design Specification (SDS).
Writing and updating the SRS & SDS for an entire system is often a lot of work when the
system is big and complex. Every update big or small of a System Requirements
Specification brings overhead with it for reasons of configuration management. When
changes are frequent the amount of overhead becomes un-workable. The delta
specifications speed up the initial phases of the project because it supports the
discussion and decision making process regarding the contents of the projects.

4.5.4 Applicability

Use the Delta Specifications for system developments or sub system developments as
part of the product creation process when:

 You are in the early requirements and design phases.

 There is an existing system and system design with which you continue.

4.5.5 Structure

The following drawing gives a graphical presentation of the relation between the product
specification documents:

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 25 of 123

SRS, PReS, SO: how they relate

SRS SDS

SRS PReS SO

a. new / modified X X
system requirements

b. adding system X
features

c. technology update X
little new requirements

Delta spec‟s

At the project start: Use as baseline the previous product documentation, i.e. SRS &
SDS.

At start of detailed design: The delta specifications together with the baseline system
documentation specify the new product.

Before start of testing: The delta specifications are merged into the SRS & SDS and
lower specifications and are of no use anymore.

4.5.6 Participants and collaborations

The following people play a role when using the delta specifications:

 The marketing department as representative of the customers plays a role in the
discussions regarding the market wishes.

 The system designer or architect writes the Delta Specifications because he is
the person that has enough overview to determine the impact of the feature on
the requirements and design.

 Project Manager and sub-project managers use the delta specification for input
to effort estimates.

4.5.7 Consequences

Since requirements gathering is an iterative process, it is helped by focusing on the
changes in evolutionary developments. However, before the testing phase the delta
requirements have to be merged into the System Requirements Specification and/or
System Design specification. Every project has to end with a complete set of
documentation that can be used for the next project as basis for further development.

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 26 of 123

In case several projects run simultaneously, while making use of shared components
(e.g. software), these projects will have to work together in order to merge there
contributions into one shared SRS & SDS.

4.5.8 Implementation

The input is the base lined system specification and design from the previous project
that made the existing product (Phase 0).

In the early project phases (feasibility and global design) the delta specifications are
gathered. Together with the baseline specifications the new product is specified (Phase
2/3 review).

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 27 of 123

In the detailed design phase the low level requirements and designs are updated based
on the delta specifications. At system level the SRS and SDS are updated before the
test phase starts (Phase ¾ review).

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 28 of 123

4.5.9 Samples

Examples of delta SRS and System Overview are given below

System Overview example

Delta SRS example

Purpose

The requirements in this section are meant for project scooping and serve as design direction.
They are detailed in the specifications in the other sections, and in sub-system requirement
specifications.
RID Requirement Supports

RID

M.SY.G.1 Requirement G1 CRS

M.SY.G.2 Requirement G2 CRS

General: Functional Requirements

RID Requirement Supports RID

M.SY.F.1 Requirement F1 M.SY.G.1

Design / Appearance
RID Requirement Supports RID

M.SY.F.1 Requirement F1 M.SY.G.1

Image Quality (FOV/SNR/SNR uniformity)

Performance

Safety and Standards

Option and Configuration

Service, Testing, Development, Manufacturing and Reliability

Rejected Requirements

Obsolete Functionality

--

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 29 of 123

System Overview example

System Requirements Specification System Design Specification WBS / remarks

Purpose

General

IQ

Performance

Safety

Option and Configuration

Service, Testing, Manufacturing and Reliability

General

IQ

Performance

Safety

Option and Configuration

Service, Testing, Manufacturing and Reliability

1

R. Putman / R. Egtberts / D. Lumenko Public 29/08/2008

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 30 of 123

System Blocks Overview
Insert drawing of (new, modified, removed) (Technical) Building Blocks, taken from, and relative to, the last authorized SDS

Background information
System function and design rationale. Fill in where appropriate.

Open issues

Rejected requirements

1 Building Block X
BB X Requirements Specification BB x Design Specification WBS / remarks

Background information

Open Issues.

 31

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 31 of 123

4.5.10 Known Uses

Philips Medical Systems

4.5.11 Related Patterns

The Requirement Impact Description (RID), also called “Pres”.

4.6 Manageable requirements traceability

4.6.1 Intent

When developing large and complex products it is often difficult to check if the end-product
contains all required functionality. To work around this, Requirements Traceability is developed.
Requirements traceability allows each specific requirement to be traced from product level down
to implementation level.

This way of tracing requirements has some known drawbacks, as described below. For this
reason a “simplified” way of requirements traceability is introduced.

4.6.2 Also known as

No other names known.

4.6.3 Motivation

The biggest issues with standard requirements traceability are:

 The number of requirements to be traced tends to explode into an unmanageable number.

 The relation between lower level requirements and product requirements becomes unclear.

This results in the following problems:

 It is hard to determine if all requirements are designed, implemented and tested completely.

 The impact of requirement changes in the product is unclear.

This pattern describes a way to avoid these problems, thus to keep requirements traceability
„manageable‟.

4.6.4 Applicability

To keep the number of requirements manageable, two important rules are introduced:

Rule #1: Product requirements are introduced on product-level, and comprise the:

 External interfaces of the product.

 Behavior and functionality of the entire product.

 The product‟s non-functional requirements.

Not part of the requirements:

 Product internal decomposition.

 Product internal interfaces.

 32

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 32 of 123

These are considered design of the product, and are a result of specific product requirements.

Traceability is done until the first discipline specific requirements documents.

Rule #2: No new requirement tags are introduced in lower level documents with respect to
traceability.

4.6.5 Structure

In this document, as an example, a virtual product is described, consisting of one unit, which
contains some electronics, mechanical parts and software (from here on called “discipline”).
This does not imply that a product has to be limited to this architecture.

It is important to remember that in the hierarchy on Product level multi-disciplinary units are
used and on unit level, the unit is split into three mono disciplinary units, each describing their
part of the unit.

Product traceability structure is as follows:

Product requirements are determined by the System Designer and documented in the Product
Requirements Specification. This is the only source of product requirements.

The Product Design Specification decomposes the product into one or more mono- disciplinary
units.

The Discipline Unit Requirements and Design documents are created for each discipline and
describe the requirements and design of the unit designed in the Product Design.

Requirements are allocated to the units and disciplines using the Requirements Traceability
Matrix (not in the picture).

The product verification includes a test traceability matrix that shows for each product
requirement how it‟s tested, and the test result (not in the picture).

Mono disciplinary Level

Multi disciplinary Product
Requirements

Product
Design

Discipline Unit
Requirements

Discipline Unit
Design

Implementation

Discipline Unit
Verification

Product
Verification

Requirements
are traced

 33

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 33 of 123

The Discipline Unit Verification specification includes a list of all requirements allocated to that
discipline and how each requirement is tested.

4.6.6 Participants & collaborations

 System Engineer: Defines the Product Requirements in the Product Requirement
Specification, Product Design Specification and Requirements Traceability Matrix.

 Software / Hardware / Mechanics designer: References the allocated requirements in the
discipline Unit Requirement Specification.

 Product Verification Engineer: Creates the product verification document and product test
traceability matrix.

 Software / Hardware / Mechanics verification engineer: Creates the discipline verification
specification and allocation of requirements to test cases.

4.6.7 Consequences

 Such a system of maintaining requirements works well, if it is kept consistent at all times.
Changes in requirements must be communicated to all parties involved (Requirements
Traceability Matrix)

 This approach has the advantage that when a requirement changes, using the requirements
traceability matrix the effect of this change can easily be determined.

 Not only requirements need to be traced, but also documents. If the Requirements
Traceability Matrix allocates a specific requirement to a specific discipline unit, it is crucial
that the Discipline Unit Requirement specification can be found easily.

4.6.8 Implementation

A standard requirement naming convention is used:
PRS.RequirementClass.Requirement

Where:
PRS: The place where the requirement originates. This is always one of the

top-level requirements documents.
RequirementClass: The type of requirement, for example: Manufacturability, or Reliability.
Requirement: Short requirement description.

Using such a strict requirement naming convention, including the place where the requirement
comes from, allows tracing of one specific requirement trough all layers of documentation both
from product level downwards to the discipline specific requirements and reverse.

Also, this naming convention allows some kind of “subclassing” of requirements (for example:
adding “.MySubclassedReq” to a requirement) without loosing traceability.

The document hierarchy looks globally like this:

 34

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 34 of 123

Product requirements Defines product requirements
Product design Globally decomposes the product into one or more

multidisciplinary units.
Requirements traceability matrix Allocates product requirements to units / disciplines
Test traceability matrix Allocates product requirements to test cases on product

level.
Product Verification Specification of test cases and results
Discipline Unit Requirements Discipline requirements specification, more detailed

description of requirements for a discipline.
Discipline Unit Verification Verification specification and results.

4.6.9 Sample

Below is an overview on how bidirectional requirements traceability is implemented:

Product Requirements Specification:

In the Product Design Specification, each chapter is preceded by a list of requirements
applicable to the specific chapter:

PRS.Performance.StartupTime

 The product shall start within xx seconds.

 35

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 35 of 123

The Requirements traceability matrix allocates the various requirements to units / disciplines:

The Unit Requirements Specification of each unit contains all requirements allocated in the
Requirements traceability matrix.

Some requirements do not require any more explanation; these are collected in a single chapter
in the Unit Requirements specification, like this:

The verification documentation of each discipline contains a list of requirements, and in which
test case these are tested:

Requirements applicability

When a requirement is clearly documented in higher level documents, it is listed
below. Requirements that need any more clarification or specialization are
discussed in the remainder of this document.

PRS.Performance.StartupTime

PRS.Performance.StartupTime

Unit will respond within yy seconds.

Requirements Tag Identification

U
n
it1

 S
o
ftw

a
re

U
n
it1

 H
a
rd

w
a
re

U
n
it1

 M
e
c
h
a
n
ic

s

PRS Requirement Tags

PRS.Performance.StartupTime x x

Requirements
allocated to
each
discipline in
each unit

Timing

PRS.Performance.StartupTime

Total start-up time is divided over:
Unit 1: yy seconds
Unit 2: zz seconds

 36

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 36 of 123

The product Verification documentation contains a Test traceability matrix that allocates product
requirements to test items:

To make checking the consistency more easy, the Product Requirements specification, Product
Design specification and Unit Requirement Specification contain a list of all requirements
referred to:

4.6.10 Known uses

Philips Medical Systems

Requirement ID Test case Description

PRS.ExposureUpgrade.Compatibility Application functionality (White
box)

The version numbers of
Buildingblocks will be
displayed

PRS.ExposureUpgrade.New&Obsolete Application functionality (White
box)

Test item: AppIitv test

PRS.ExposureUpgrade.OperationalConc
epts

Application functionality (Black
box)

Test acquisition techniques

List of product
requirement
tags

Test case in
which this
requirement
is tested

Explicit /
implicitely
tested and by
who?? Which

aspects have
to be tested?

Appendix A: Requirement Tags Look-up table

PRS.ExposureUpgrade.New&Obsolete 6
PRS.ExposureUpgrade.OperationalConcepts 6
PRS.ExposureUpgrade.Compatibility 7

 37

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 37 of 123

4.6.11 Related Patterns

No related patterns.

 38

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 38 of 123

5 Design related Process Patterns

5.1 Critical Computer Resource Management pattern

5.1.1 Pattern Name and Classification

Resources like CPU memory, CPU capacity, disk space, etc. are limited by nature. These
resources are known as “Critical Computer Resources” or CCR. During the evolution of a
product and its SW, these resources should be managed carefully and with special focus in
order to preserve as much as possible future evolutions of the product. This is more then ever
applicable in case of embedded SW and HW design where these resources are scarcer.

5.1.2 Intent

When adding new features or HW to an existing product, the CCR should be properly estimated
and tracked as an explicit item during the complete development cycle. It avoids unpleasant and
usually very difficult and costly to fix “surprises” late in the development cycle. Besides this it
also avoids premature dead of a product variant because of lacking resources to accommodate
new features

5.1.3 Also known as

Critical Computing Resources.

5.1.4 Motivation

Engineers who are developing features, especially in SW, intend to forget about CPU memory
and CPU performance limitations. This is even more the case when using object oriented
languages since usually a lot more code is generated by the compiler and memory is used by
this generated code compared to traditional lower level programming languages. Explicitly
paying a lot of attention to these critical computer resources during the complete development
lifecycle avoids in most cases that issues related to this topic only popup very late in the cycle
(during test). When these issues pop up late in the development cycle, there are usually not a
lot of options open to correct the issue without having to start the design (partly) all over again.
This is not only very costly, but also introduces severe delay in the project.

5.1.5 Applicability

The process pattern is applicable for all SW design. It is also applicable for HW design in case
programmable components (Field Programmable Gate Arrays) or processors (On Board
Controllers, Network Processors) are being used.

5.1.6 Structure

Below is an overview of applying the process when dealing with the feature development
process. The same principles can be applied for other development processes aswell.

 39

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 39 of 123

M1 M2 M3 M4 M5

Identify CCR requirements

Make CCR estimates

Define CCR thresholds

Input for HW design

Refine CCR estimates

Input for SW design

Report CCR actuals

Take corrective actions

if thresholds exceeded

Test usage of CCR

CCR planning CCR tracking

Feature Analysis Feature Specifcation Feature Implementation Feature Test

Mn: Milestones in the project

The following phases can be distinguished:
 During feature analysis, CCR requirements are identified and formulated. For example:

number of subscriber lines to be supported, sustainable packet processing speed, etc.
 During feature specification, based on the available CCR requirements, CCR estimates are

made in terms of the amount of memory required, needed CPU capacity, disk space
needed. For new HW design, in addition some free margin must be taken into account in
order to allow the product to evolve in time if needed and to be able to cope with additional
features on the same HW platform. For example, the amount of free memory in case of new
board design should be at least 50% of the available memory.
In addition, some CCR thresholds are being defined. These thresholds specify the
boundaries in which the realized CCR should fall compared to the estimated CCR. When
these boundaries are crossed, the CCR issue is brought under the attention of the project
meeting, which can decide on corrective actions. These thresholds allow for some flexibility
and inaccurateness of the estimated CCR during the development process.

 During feature implementation, the CCR estimates done during feature specification are
taken as requirement (CCR budget) for the feature and are used to steer the SW design.

 During the different test phases of the feature, the actual CCR usage by the system is
measured and compared against the CCR requirements and estimates that were put
forward. Corrective actions and lessons learned are taken as necessary.

5.1.7 Participants

Product Line Management together with Product Architects formulate the CCR requirements
according to the customer requirements and the product future needs.
The Feature Architect translates the CCR requirements in CCR estimates based on the solution
selected for the feature. The Product Architect reviews these CCR estimates in order to keep a
System wide view and control on the overall CCR of the product.
The SW and HW designers take the CCR estimates into account for making their design. Finally
they measure the CCR actually used by the feature and try to stay within the CCR budget that
was put forward. From the moment they cannot maintain any longer their CCR usage within the
acceptable boundaries, they have to report this as soon as possible to the project management
board where the necessary corrective actions can be decided.
During this whole process, the CCR are maintained in a sheet per product or product part
depending on how it is organized for the product concerned.

5.1.8 Collaborations

When applying the process pattern, there is close collaboration and discussion between the
different roles contributing to the CCR from the start of the project all the way to the end of the
project as has been explained in previous chapter.

 40

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 40 of 123

5.1.9 Consequences

By formalizing the CCR as special item to be estimated and tracked during the whole
development cycle, one can in most cases avoid late surprises or premature dead of a product.
It is also more cost effective, since future evolutions of the product shall be considered when
doing the analysis, in order to come to the most economical solution in terms of the HW
required (memory, CPU processing speed, etc.) and the cost associated, to allow sufficient
evolution of the product being able to meet the future requirements.

5.1.10 Implementation

Since estimating CCR is not always trivial (for instance in case of estimating needed CPU
processing capacity that fits the requirements), applying the process smoothly requires some
experience which can be build up step by step doing the process pattern project after project.
So initially still some issues related to CCR could pop up late in the cycle. Estimates will not be
always be accurate from the beginning. However the experiences gained during the execution
of the process, followed by appropriate lessons learned analysis, will make it possible for the
participants to gain more and more knowledge in this complex area and gradually will make
applying the process pattern more mature in future projects.

5.1.11 Sample

Below is an example of how a CCR estimation and tracking sheet could look like.

CCR Estimation/ Tracking Worksheet Release Rx.x Baseline ReleaseRx.x-1

Amount free

Baseline Rx.x-1

Board CCR Type Physical Limit Value (%) Value

Diff btw

Actual

&

Estimat Value (%) Value

Card1 RAM 33.554.432 792.128 2,36% 794.524 0,30% 8.388.608 25,00% 822.364

Card2 RAM 33.554.432 10.463.102 31,18% 10.873.648 3,92% 8.388.608 25,00% 11.542.964

Card3 RAM 33.554.432 15.868.426 47,29% 12.345.678 -22,20% 8.388.608 25,00% 17.568.972

Card4 RAM 134.217.728 60.648.242 45,19% 58.462.482 -3,60% 33.554.432 25,00% 62.462.868

Corrective Actions

Board CCR Type Corrective Action

Card1 RAM No further feature evolution on this board

Current Estimated

Amount Free

Actual Amount Free

(date)

Amount free

Threshold (date)

When a new project starts a new sheet is created with all the cards available in the product and
with the actual CCR (in this case RAM memory) from the baseline project release.
During feature specification, the new estimated CCR values are written down in the appropriate
column.
Later on when actual CCR become available, the actual amounts of CCR are filled in. In case
certain thresholds are passed, then the percentages are displayed in red, meaning that most
probably corrective action needs to be taken for the board concerned.

 41

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 41 of 123

5.1.12 Known uses

Estimating Critical Computer Resources as part of estimating the cost and effort of a project is
also mentioned in the Capability Maturity Model (CMM) and Capability Maturity Model
Integration (CMMI). These models, well known by the industrial community, are used a lot by
companies trying to get their development process streamlined and under control. So most
probably, other companies might also have implemented similar process patterns to deal with
these CCR.

5.1.13 Related patterns

Similar patterns will most probably exist trying to address the same problem, but are not known
by the author.

5.2 Multidisciplinary product configuration management pattern

5.2.1 Pattern name and classification

The Multidisciplinary product configuration management pattern helps to design a product
taking into considerations the viewpoints from various stakeholders.

5.2.2 Intent

The intent of the process pattern is to make the organization more aware of the importance of
multidisciplinary product configuration management in an early phase of product development.
In order to realize this, a common understanding on various views of a product needs to be
established.
The result of this process pattern is a tutorial/guideline for usage of multiple product
representations and related terminology,

5.2.3 Also known as

-

5.2.4 Motivation

Marketing, Product Designers, Product Configuration Managers, Development Engineers (of
various disciplines), Manufacturing Engineers and Service engineers each use there own
product structuring and talk about it from their own perspective and with their own terminology.

Traditionally each discipline tends to work as long as possible in their familiar mono-disciplinary
authoring environment e.g. CAD-M, CAD-E, and Software Development Environment.

All disciplines need to be are aware of these multiple view points, terminology and product
structures and start working in a multidisciplinary configuration management environment early
in the design phase. This allows us the make the proper architecture choices (i.e. modularity,
interfaces) when they have the least impact on development resources. This will improve design
reuse, manufacturability, testability, serviceability, simplify order management etc.

 42

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 42 of 123

5.2.5 Applicability

The pattern is targeted and therefore applicable for all disciplines with product development.

5.2.6 Structure

System

design

Product configuration

management Engineering

Marketing
Customer

serviceslogistics manufacturing

Product views

Each disciplines looks at a product from their own perspective, and therefore has its own
requirements and wishes with respect to the representation of a product. In order to optimally
support these needs, currently several product representations (also referred to as product
structures) are in use. Obviously there is a strong relation between these representations.

Each product representation consists of:

o Objects (i.e. parts, documents)
o Object description data
o Relations/links between objects (i.e. structures)
o Attributes on objects & relations (to allow views on structures)
o Status of objects & relations
o History of objects & relations

The following product representations are recognized and described:

1. Conceptual Product Structure
2. Commercial Product Structure
3. Engineering Product Structure
4. Manufacturing Product Structure
5. Customer Support Product Structure

The Conceptual Product Structure describes the product from a design perspective. The main
objects in this representation are called conceptual elements, which represent the design
decomposition. Each Conceptual Element must follow certain characteristics:

o The conceptual elements reflect a stable product architecture and these elements have
there own design life cycle

o The design of the conceptual elements can be independently verified & validated
o The conceptual elements have clearly defined/described interfaces.

 43

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 43 of 123

o The conceptual elements have there own Design History File i.e. documentation set
including the following information:

 Design input i.e. requirements
 Design output i.e. specifications & descriptions
 Design review
 Design verification & validation
 Design transfer
 Design changes

Within this representation the following terminology is defined:

o Family, system, system variant, subsystem, conceptual element & platform

The Commercial Product Structure represents the product from a sales perspective.
It describes how, based on selection of features and options, a specific variant of a configurable
sales product can be selected. This structure is used in the product catalog from which an end-
customer orders a product.

Within this representation the following terminology is defined:

o configurable sales product, feature, option, commercial constraints
.
The Engineering Product Structure is the multidisciplinary Bill-of-Materials described from an
engineering perspective. It contains the materials and related technical product documentation.
Documents (e.g. CAD-drawings) and data files (e.g. SW executables) are imported for the
various authoring tools i.e. CAD-systems, Software Development Environment. The material
contains the basic engineering master data.

Within this representation the following terminology is defined:

o Materials , Approved Manufacturer List

In our IT solution we have separated the engineering product structure into a configurable (top-
level) Bill-of-Material and fixed (lower-level) Bill-of-Materials.
This configurable top-level part is referred to as the Product Variant Structure (PVS).
The PVS describes the conditional relations between the fixed BoM‟s in terms of dependencies
and characteristics.

Within this PVS the following terminology is defined:

o Configurable product, product variant, dependency, characteristic

The Manufacturing Product Structure is the classic multidisciplinary Bill-of-Material. Currently
the materials and relations in the manufacturing product structure are the same as for the
Engineering Product Structure. Only the master data is enhanced with information required
within manufacturing, procurement, logistics, packaging, distribution etc.

Within this representation the following terminology is defined:

o Materials, Building Blocks and assemblies

Building Blocks and assemblies should be seen as classification (labeling) of materials in the
manufacturing Bill-of-Material. A material that is labeled as Building Block need to have clearly
defined functionality and interfaces and are fully testable. An assembly is an intermediate state
in the supply chain or manufacturing, created for supply chain / manufacturing purposes only.

 44

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 44 of 123

The Customer Support Product Structure represents the product configuration from a customer
support perspective. This reflects the physical hierarchy of the product how it is serviced in the
hospital. This structure is used in e.g. service documentation, reporting of maintenance activities
and traceability of delivered devices.

Within this representation the following terminology is defined:

o System, Physical Main Block, Physical Sub Block, Traceable Item

5.2.7 Participants & collaborations

This pattern focuses on a guideline to be used in all disciplines.

The guideline is developed by the PLM architect in close cooperation with the process owners
of Software Configuration Management, Hardware Configuration Management, Manufacturing
Engineering and Marketing.

5.2.8 Consequences

There is a strong relation between the various product representations. Each product
representation reflects a process behind it. Therefore a good understanding of all product
representations is a precondition to understand the consequences of design choices in product
structuring. This knowledge is a precondition for proper modular design and incremental product
development and ultimately reducing design complexity and increasing speed in development.

5.2.9 Implementation

Aspects to be taken into account for this pattern are:
o Add real-life examples that will be recognized by the target group (trainees)
o Realize that old terminology will follow you for years. Consequent usage of the terminology

by all process owners is necessary. Do not assume, but verify that people use the
terminology as intended.

o Make the training as visual as possible so that it will stick in the mind of people.
o PowerPoint‟s & posters are helpful in communication but significant training is required

before it results into changes in our way of working (see 9: consequences) An additional
process pattern will be assigned to this.

5.2.10 Sample

A detailed example of these different representations for one specific product is not yet
available. The usage of the Conceptual Product Structure and the Product Variant Structure is
currently being piloted. The design documentation which is now planned to be structured
conform the conceptual elements was until now project oriented. Ideas on the usage of the
Product Variant Structure are still in a premature stage.

5.3 Software FMEA pattern

5.3.1 Pattern name and classification

Software failure mode and effect analysis

 45

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 45 of 123

5.3.2 Intent

Failure mode and effect analysis (FMEA for short) is a method to think about failure modes in a
system and the effect they have. FMEA enables thinking about failure modes in an early
development phase. FMEA has been around for a long time but has never been documented for
the purpose of improving product quality when it comes to software.

5.3.3 Also known as

FMECA (Failure modes, effects and criticality analysis) src: www.ntnu.no/ross/srt/slides/fmeca.pdf

5.3.4 Motivation

A FMEA session is being applied to increase product quality and reliability.

Thinking of potential failure modes in concept/design phase and process will enable early
identification of failures. At these phases the possibility exists to choose new
design/concepts/processes to eliminate the failure modes. This is of course highly favorable
above finding solutions for problems found in the end phase of product development or even
worse in the operational phase. Not thinking about possible failure modes in advance results in
more problems found during test and integration, which will be experienced as the system not
being robust enough. The result of this is that the product is being delayed for an undetermined
period of time.

5.3.5 Applicability

Software FMEA must be performed as a pre-design step on each development level (system,
sub-system, unit and module). The outcome of the Software FMEA will be used as design input.
For the FMEA to have full effect it could also be done on a concept or architecture.

5.3.6 Structure

As stated earlier FMEA has been around for a long time and has been well documented. The
difference between performing an FMEA on hardware is that for software the focus of the failure
mode should not be the software itself but rather the environment in which it runs. This means
focusing on e.g. timing fluctuations of other parts of the system or wearing or tearing of
hardware like e.g. hard disc. The assumption is that software does not wear out and that a
software bug should have been found during the test phase but for certain will behave
consequently.

The outcome of the Software FMEA should be recorded in the next template
(one example filled in):

Nr Function

block
Process step

Potential
Failure
Mode

Potential
Effect (s) of

Failure

Potential
Cause of
Failure

Current

Controls

P

S

*)
w

D

RPN

Recommended
action

Owner Due date

1 Ethernet traffic Defective
optical
giga bit
Ethernet
cable

Missing data
on receiver
side

Too tightly
wrapped

 3 5 5 75 Check link
speed on
network
interface card

MC 2007-03-
12

*) w = weight factor (to incorporate moment that the failure effect will be noticeable to customer),

default [w=1]

 46

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 46 of 123

 <1 year [w=1.5] 1-2 year [w=1.2] >2 year [w=1.0]

Software FMEA is performed in the following easy steps

 get acquainted with the system

 brainstorm on failure modes

 determine the effect of the found failure modes

 determine the risk of the failure mode

 determine the failure modes that must be addressed

5.3.6.1 Get acquainted with the system

A Software FMEA should be performed with persons that have a solid understanding of the
system of which the software component is part, through well preparations.

5.3.6.2 Brainstorm on failure modes

Formulate a small group of persons with different views on the system and the software unit to
create a list of failure modes. The brainstorm sessions should be kept should (should not
exceed 30 minutes) to have maximum effect. Depending on the complexity of the system more
brainstorm sessions could be needed.

An important aspect is that only one failure mode is addressed at a time. Various failure modes
might have overlapping effects so it is important to specify them isolated per failure mode.
Failing to do this will result in situations in which multiple failure modes are combined thereby
losing the possibility to discriminate to the right failure mode.

It is the moderators‟ job to avoid discussions about e.g. effects and priority. These items will be
addressed later in the process.

5.3.6.3 Determine the effect of the found failure modes

This part of the process must be done with persons that have indebt knowledge of how the
software works in the system. Only they can determine the impact of a failure mode on
software.

5.3.6.4 Determine the risk of the failure mode

The risk can be expressed as the product of change of occurrence, the change to detect the
failure and the impact of the failure on the system.

RPN* = Probability * Severity * Detection
* RPN = Risk Priority Number

Appendix A has tables to differentiate between levels of change, detection and impact.

5.3.6.5 Filter the failure modes that must be addressed

This figure (Risk Priority Number) can be used to discriminate which failure modes to address
and which to leave as is. The cost to mitigate (to implement and test) the failure mode must also
be taken into account.

For the failure modes that will be addressed recalculate the RPN.

 47

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 47 of 123

5.3.7 Participants / Collaborations

The following functions are involved in this pattern:

 Architects, designers, developers, manufacturing engineers, service engineers, suppliers
and even customer/user can do the initial identification

 Managers (project managers) have to approve the cost and time to mitigate the failure
modes. They also have to decide where the line is drawn on which failure modes should
be solved.

 Moderator. This person does not need to have any knowledge about the context but is
responsible to structure the meetings and keep focus during the meetings.

5.3.8 Consequences

The consequence of performing a Software FMEA is to spend more time on architecture, design
and implementation. The return on investment is less integration time and a more reliable
system with higher quality.

5.3.9 Implementation

When formulating a team to brainstorm about failure modes is might be useful to invite persons
of other projects which have experience with some of the concepts as e.g. Ethernet or RAID
configurations.

If the system under development is similar to an already available system it could be beneficial
to perform root-cause analysis on the found problems and add those to the list of failure modes.

Try to isolate the failure mode during the brain storm session. E.g. packet loss on Ethernet can
have miscellaneous root-causes. Cabling, network interface card, software stack, switch/router,
etc are all failure modes.

When the list of found failure modes is very long is could be useful to quickly reorder it so have
implausible failure modes are at the end of the list. This way the less plausible ones can be
skipped (but keep them recorded).

Lowering the RPN can be done by lowering the severity (e.g. a retry mechanism) or by adding
measuring point so that the failure mode can be detected and reported clearly.

5.3.10 Sample

Ranking of Probability, Severity and Detection

value Meaning: ranking

Very high Failure is almost inevitable 10

High Repeated failures
i.e. design new or corresponds to earlier designs, which had a
high field call rate

8

Moderate Occasional failures
i.e. Design corresponds to earlier construction and showed to
have low failures

5

Low Relative few failures
i.e. Design corresponds to earlier constructions and had no/ very
low field calls

3

Remote Failure is unlikely 1

 48

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 48 of 123

 Source: IEC 60812:2006, comments added based on CFT Hilberink

Table 2- 1. Probability Ranking (root cause in design)

 Severity of the effect (S) ranking

Very high Failure mode involving potential safety problems and/or
conformance to federal regulations. It might endanger the operator
or patient. (10 without warning, 9 with warning)

10

High Serious customer dissatisfaction due to the nature of the failure
effect such as a non-operational (part of a) system. It does not
concern a safety issue or non-compliance to regulations.

8

Moderate Causes some customer dissatisfaction or annoyance. The customer
notices a deterioration of the working of the system. It might require
reparation.

5

Low The failure will only cause a slight user dissatisfaction or
annoyance. The customer will possibly notice a slight effect on the
working or performance of the system.

3

Minor Unlikely that the failure will have a noticeable effect on the working
of the product. The user will probably not notice the effect.

1

Source: Philips Display Components -scale modified by GJ. Laurenssen

Note: Early failures (e.g. during warranty period) might create more annoyance to our
customers. Therefore the introduction of a weighting factor might be considered. This can be
incorporated as an additional column in the FMEA table.

Table 2- 2. Severity Ranking (effect on end-user)

 meaning ranking

Absolutely
uncertain

Design control will not and/or cannot detect a potential cause /
mechanism and subsequent failure mode; or there is no design
control

10

Remote Remote chance the design control will detect a potential cause /
mechanism and subsequent failure mode

8

Moderate Moderate chance the design control will detect a potential cause /
mechanism and subsequent failure mode

5

High High chance the design control will detect a potential cause /
mechanism and subsequent failure mode

3

Almost
certain

Design control will almost certainly detect a potential cause /
mechanism and subsequent failure mode

1

Source: IEC 60812:2006

Table 2- 3. Detection ranking (timely detection of a failure)

5.3.11 Known uses

Philips Medical Systems

5.3.12 Related patterns

Root cause analysis pattern

 49

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 49 of 123

5.4 Security and Privacy pattern

5.4.1 Pattern Name and Classification

The Security and Privacy pattern ensures the confidentiality, integrity and availability of assets
directly or indirectly involved with a product. The asset definition depends on the product but in
this case consists of items such as personal data, intellectual property, system applications,
configuration parameters, etc. This is an aspect of development that is relative new and also
important to incremental and evolutionary software development.

5.4.2 Intent

The intent of this pattern is to

 Detect, analyze, document and if possible mitigate security and privacy risks as soon as
possible during the development process or when released during the entire period that
the product is under support.

 Security and privacy flaws are risks to the end user, third parties and the manufacturer of
a product.

 Ensure that a product complies with privacy and other legislation to ensure, within
business acceptable boundaries, that (un)intended misuse is unlikely.

5.4.3 Also Known As

Security and Privacy are specializations of risk analysis, requirements gathering, code analysis,
testing and validation and last but not least part of the life cycle management process.

5.4.4 Motivation

 It is important to protect customers or third parties of our products against threats like
identity theft, misuse of banking accounts and disclosure of other personal data. Not only
because it is mandated by law, but also because such a breach can seriously damage a
company‟s reputation and induce a high cost if breach notification is mandated by law.

 Managing security and privacy of risks to a company also falls under compliance such
as the Sarbanes-Oxley Act because an incident can have major financial repercussions.

5.4.5 Applicability

 This pattern is applicable to all process models.

 Performance can be measured using code reviews, code analysis tools, security
scanning tools, compliance to security/privacy requirements, number of incidents and
the results from a dedicated penetration test team.

 Security scanning tools exist on source code level and application / OS level.

5.4.6 Structure

This pattern enforces actions to be addressed at several stages of the development process:

 During project definition a security and privacy risk analysis should be performed to
surface the vulnerabilities as earlier as possible during the development cycle. A risk is
the product of the severity of the vulnerability against the likelihood that it can occur.
These risks should be addressed by the business whether they are acceptable, if not
enforced by law, or should be mitigated.

 During project development the development team should perform code reviews
specifically focusing on security and privacy issues. This can be done on the entire code

 50

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 50 of 123

or, depending on the defined business level, only on essential assets as defined by the
initial security and privacy risk analysis.

 During project development and sub-component deliveries several tests are performed
each time to ensure that no new vulnerabilities are introduced.

 During final project test and verification a test team performs security scans of the
product to document the current state and to validate that the mitigations, as approved
during the initial security and privacy risk analysis, have been resolved and to surface
possible new issues. The final state and findings are document in an updated security
and privacy risk analysis report that is signed by the product manager, development
manager and product security officer.

 As a corporate level audit it might be essential to hire a specialized outside firm to
perform black or white box penetration testing to validate the works of the development
team.

 When a product is released it should be monitored during its entire commercial life to
ensure that new vulnerabilities discovered in the product or components used by the
product do not break the determined level of confidentiality, integrity and availability. This
work should be done of a dedicated team of security/privacy savvy personnel.

5.4.7 Participant

Project management processes
Other risk related processes such as safety and business risks
Requirements management
(Peer) review processes

5.4.8 Collaborations

There are several levels of collaboration each with their own level of expertise.
The highest level is the corporate Product Security Leadership Council that defines the security
and privacy policies for the organization. Next level consists of security specialist within the
project teams. Security awareness should be assured in the entire development group including
architects, designers, implementers and testers. This is achieved through presentations, training
and participation in security / privacy analysis.
Informing management of state, progress and incidents is also an important step to ensure
overall acceptance.

5.4.9 Consequences

This pattern supports and proves the objectives by:

 Ensure requirements are set and validated

 Reporting at start and end of the project

 Early detection of possible issues

5.4.10 Implementation

There are several security and privacy risks analysis methods and tools for the office IT
environment. They do not directly match on a security and privacy risks analysis for products
since the environment in which the product will live is uncontrolled.
An example of such a method is OCTAVE. Parts of this method are used during our product
security and privacy risks analysis.

Enforcing security and privacy mandates the support of management and corporate policies.
Although the business risks on a top management level might be quite obvious the product

 51

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 51 of 123

marketing teams that drive product requirements need this extra trigger since these
requirements are often stated as „not demanded by our customers‟.

Two main policies drive the implementation into the organization. One mandates the security
and privacy process while the other policy defines the requirements that should be implemented
by all products.

First step is to setup a specialized team to start driving security and privacy into the
organization. When this is setup this team should handover the work to the normal development
teams. This starts with awareness follows by the appropriate training on all levels, e.g. OS
hardening, risk analysis, data classification, secure coding, etc.

 52

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 52 of 123

5.4.11 Sample

The security and privacy process is applicable from the start, e.g. conceptual phase of a product
right up to the end of support point in time. It thereby overlaps all processes within the company
that involve development, support and life cycle management.

When using this process there is distinct difference between the type or state of a product being
either a product in design, a product currently in the catalog and being shipped or a product that
is no longer sold but still under support. The following figure shows the difference in the
treatment of the three different type or state of a product to address security and privacy.

This picture does not clearly indicate that the product security verification and validation is
performed multiple times during the process creation since this is an iterative process. Also
subsequent minor releases of the product or service packs will undergo these tests.

Activities in rectangular boxes produce documentation and are specified by explicit processes
under the product security and privacy policy.

5.4.12 Known Uses

Currently, this pattern is applied within Philips Medical Systems.

Product
Security

investigation

Exploit /
vulnerability

report / platform
security upgrade

Re-engineer
and upgrade

Security
management

plan

Threat/
vulnerability/

risk
assessment

Product in
design

Product with
security

designed-in

Product Creation Process

Product
security

verification/
validation

Product/
process

security audit

Current
catalog
product

Threat/
vulnerability/

risk
assessment

Notify customer No action

Product
in

support No

From the field

Security
concern?

Yes

Security
specification

Security
management

plan

Primary
risk

assessment
“Risk Triage”

Moderate
or high

risk

3 rd party suppliers /
security community

Global
product
security

requirements

Actual /
 could lead to

a breach?
Yes

No

 53

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 53 of 123

5.4.13 Related Patterns

None

 54

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 54 of 123

6 Code related Realization Process Patterns

6.1 Continuous Builds Pattern

6.1.1 Pattern name and classification

In the continuous builds method, software builds are automatically created from the source
code and tested every fifteen minutes. The method contributes to the quality of the software and
the effectiveness of the development process by highlighting critical errors in the software early
on.

6.1.2 Intent

Automated continuous builds creates a new build from the sources, runs a series of automated
back box test and creates a report every 15 minutes. Would the build or the tests fail, the
process creates an automated error message and sends it to the developer and the software
architect in case whom can then address the issue immediately.

6.1.3 Motivation

Finding and correcting software errors as early as possible saves both time and money. Once a
critical error gets to go unnoticed for a period of time, the amount of resources required to fix it
can increase almost exponentially if the bug affects other parts of the software causing multiple
people fixing multiple errors. In the case of multiple software programs interacting with each
other, the case is even worse.

6.1.4 Applicability

The general method is applicable in all kinds of software development projects. However,
Calassa Labs‟ implementation of the method is only suited for rather small development teams
as currently there are no automated tools for solving cases where more then one developer has
checked in erroneous code simultaneously. These situations still require co-operation between
the developers and the architects.

6.1.5 Participants

The participants are the software architects and developers using the method in the
development work and creating and maintaining the tests.

6.1.6 Collaborations

Once an error is detected, the system sends an automated error report to the software
developer and the software architect. In most cases, the software developer fixed the error and
checks in new fixed code. If needed, the software architect assists the developer to address the
issue. In the case there are several errors affecting the same build, the developers will
coordinate their efforts in solving the issue.

 55

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 55 of 123

6.1.7 Consequences

Being an agile method, the continuous builds method speeds up the development process and
enhances the quality of the software whilst enabling the developers to better focus on the actual
development work instead of creating builds, testing and fixing old errors.

6.1.8 Implementation

Due to the extensive work required to develop and maintain the required tests, the method is
not suitable for all software projects. In the case of small, simple software projects, the
implementation might require more resources than could be saved by utilizing the method. On
the other end, with complicated software projects with multiple configurations and interactions,
maintaining the test base could prove to be next to impossible.

6.1.9 Known Uses

Most companies committed to developing quality software will have similar methods in place.
Also, commercial solutions are available to implement automated builds and testing.

 56

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 56 of 123

7 Testing related Process Patterns

7.1 Risk based Testing pattern

7.1.1 Pattern name and classification

Risk Based Testing

7.1.2 Intent

The purpose of risk based testing is to divide the limited amount of test time and resources such
that the total costs of defects are minimized by spending most effort on finding serious defects.
To be used to prioritize test effort based on technical and business risk analysis. This is
necessary within evolutionary product development to find the most important defects as early
as possible within given time boundaries.

7.1.3 Also known as

Product Risk Analysis

7.1.4 Motivation

Testing the (integrated) product is the last thing done in a project. In general, testing is always
under pressure. A 100% test coverage is simply too costly. The benefits of Risk Based Testing
are:

 Focus to detect the more serious defects.

 Test depth depends on risk level.

 At any given time, the test team can inform management clearly on the remaining risks.

7.1.5 Applicability

Risk Based Testing can be applied when other methods of organizing the test effort demand
more time or resources than can be afforded. Typical situations are:

 Time-to-Market driven projects

 Technology driven projects with high uncertainties or that are difficult to plan

 Projects with complex software and hardware combinations.
In general, difficult to plan projects with high risks in combination with Time-to-Market pressure.

7.1.6 Structure

1. Involve stakeholders w.r.t. risks.
2. Make a prioritized list of risks.

The result is recorded in a Product Test Risk Matrix. This matrix is divided in four risk areas
(quadrants I, II, II and IV), with the business risk along the vertical axis and the technical risk

 57

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 57 of 123

along the horizontal axis.

3. Perform testing that explores each risk.
4. As risks evaporate and new ones emerge, adjust test effort to stay focused on the current

crop.

7.1.7 Participants

At least the following roles participate in Risk Based Testing: Architect (s), Application
representative(s), End user representative(s), Tester(s), Test Manager, Marketing
representative(s).

7.1.8 Collaborations

Inputs for risk based testing are:
1. The technical aspects of the system.

These aspects are provided by the technical people of the project (architect, testers).
2. Use of the system.

Usage information is a/o provided by the customer and the end user.
3. Business risks analysis

Participants further collaborate by attending 2 meetings:
1. Kick-off meeting.

In this meeting, the correctness and completeness of selected test items, attributes, weight
factors and stakeholders is verified. The rules are explained according to which the risk
scoring has to be performed. Agreements are made about the assignment of attributes to
the various stakeholders.

2. Risk consolidation meeting.
In the risk consolidation meeting with all stakeholders, an agreed Product Test Risk Matrix is
defined. The test items with large differences in risk scores are discussed and corrected. If
necessary, weight factors between the attributes are discussed and corrected. Furthermore,
test items close to the border of two risk areas are discussed and corrected.

7.1.9 Consequences

 Eases the communication

 Remaining risks are clear at any time

 Serves as input for test strategy and test plan

 Ensure stakeholder involvement upfront

 Allows for differentiation in test approach:
o Lightweight test techniques for low risk items

 58

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 58 of 123

o Heavy weight test techniques for high risk items

7.1.10 Implementation

This input is based on the running projects within Philips Medical Systems.

Requirements Risk Matrix
par function pizza item rank par function pizza item rank

9999 XXXXXXXXX XXXXXXXX 150 9999 XXXXXXXXX XXXXXXXX 169

9999 XXXXXXXXX XXXXXXXX 150 9999 XXXXXXXXX XXXXXXXX 167

9999 XXXXXXXXX XXXXXXXX 144 9999 XXXXXXXXX XXXXXXXX 163

9999 XXXXXXXXX XXXXXXXX 138 9999 XXXXXXXXX XXXXXXXX 154

9999 XXXXXXXXX XXXXXXXX 133 9999 XXXXXXXXX XXXXXXXX 154

9999 XXXXXXXXX XXXXXXXX 127 9999 XXXXXXXXX XXXXXXXX 142

9999 XXXXXXXXX XXXXXXXX 125 9999 XXXXXXXXX XXXXXXXX 142

9999 XXXXXXXXX XXXXXXXX 125 9999 XXXXXXXXX XXXXXXXX 142

9999 XXXXXXXXX XXXXXXXX 125 9999 XXXXXXXXX XXXXXXXX 140

9999 XXXXXXXXX XXXXXXXX 121 9999 XXXXXXXXX XXXXXXXX 140

9999 XXXXXXXXX XXXXXXXX 117 9999 XXXXXXXXX XXXXXXXX 129

9999 XXXXXXXXX XXXXXXXX 117 9999 XXXXXXXXX XXXXXXXX 129

9999 XXXXXXXXX XXXXXXXX 108 9999 XXXXXXXXX XXXXXXXX 127

9999 XXXXXXXXX XXXXXXXX 98 9999 XXXXXXXXX XXXXXXXX 123

9999 XXXXXXXXX XXXXXXXX 98 9999 XXXXXXXXX XXXXXXXX 123

9999 XXXXXXXXX XXXXXXXX 120

9999 XXXXXXXXX XXXXXXXX 115

9999 XXXXXXXXX XXXXXXXX 115

9999 XXXXXXXXX XXXXXXXX 115

9999 XXXXXXXXX XXXXXXXX 115

#REF!

9999 XXXXXXXXX XXXXXXXX 100 9999 XXXXXXXXX XXXXXXXX 125

9999 XXXXXXXXX XXXXXXXX 94 9999 XXXXXXXXX XXXXXXXX 121

9999 XXXXXXXXX XXXXXXXX 92 9999 XXXXXXXXX XXXXXXXX 106

9999 XXXXXXXXX XXXXXXXX 92 9999 XXXXXXXXX XXXXXXXX 102

9999 XXXXXXXXX XXXXXXXX 88 9999 XXXXXXXXX XXXXXXXX 92

9999 XXXXXXXXX XXXXXXXX 88 9999 XXXXXXXXX XXXXXXXX 90

9999 XXXXXXXXX XXXXXXXX 85 9999 XXXXXXXXX XXXXXXXX 90

9999 XXXXXXXXX XXXXXXXX 83 9999 XXXXXXXXX XXXXXXXX 90

9999 XXXXXXXXX XXXXXXXX 81 9999 XXXXXXXXX XXXXXXXX 73

9999 XXXXXXXXX XXXXXXXX 81

9999 XXXXXXXXX XXXXXXXX 73

9999 XXXXXXXXX XXXXXXXX 65

9999 XXXXXXXXX XXXXXXXX 63

9999 XXXXXXXXX XXXXXXXX 63

9999 XXXXXXXXX XXXXXXXX 60

9999 XXXXXXXXX XXXXXXXX 56

9999 XXXXXXXXX XXXXXXXX 50

9999 XXXXXXXXX XXXXXXXX 50

9999 XXXXXXXXX XXXXXXXX 48

9999 XXXXXXXXX XXXXXXXX 48

9999 XXXXXXXXX XXXXXXXX 42

9999 XXXXXXXXX XXXXXXXX 19

II I

IV III

technical risk

b
u

s
in

e
s

s
 r

is
k

Definition of quality characteristics

Functionality
The capability of the product to provide functions that meets stated and implied needs when the
system is used under specified conditions.
Reliability
The ability of the system to perform its required functions under user conditions for a specified
period of time, or for a specified number of operations.
Image quality
'The basic image quality' requirements for Cardiac and Vascular systems are defined in [SRS-
IQ]. This document describes the system in terms of image quality parameters in such a way
that if a system meets the requirements in this specification the image quality of that system is
guaranteed. Note that IQ must be regarded in combination with dose management.
Interoperability
The capability of the software product to interact with one or more specified components or
systems.
Usability
The capability of the product to be understood learned, used and attractive to the user when
used under specified conditions.

 59

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 59 of 123

Serviceability
The ability to diagnose and solve a problem easily, adequately and quickly. Most important here
is the MTTR, the mean time to repair because of its influence on the system up-time
Manufacturability
The ability to actually manufacture the product. (E.g. are the requested tolerances feasible, is
yield acceptable, are parts duplicable, are subcontractors available, production facilities in
place, is the system producible in isolated manufacturing steps etc.) This ability too is primarily
to be taken into account in the system design by the architects.)
Note: install ability is part of serviceability.
Security
Product Security includes all aspects of securing the Confidentiality, Integrity and Availability of
data and systems in the healthcare environment.
Risk Management
The capability of the product to achieve acceptable levels of risk of harm to people, business,
software, property or the environment in a specified context of use.
Norm compliance
The capability of the product to adhere to legal regulations related to its use.

Mapping of test techniques to quality attributes and risk quadrants

Quality
attribute

I II III IV

Functionality Equivalence Partitioning
Boundary Value Analysis
Cause Effect Graphing
Elementary Comparison Test
State Transition Test (1 switch)
Process Cycle Test (2 test m.)
Use cases

Equivalence Partitioning
Process Cycle Test (1 test m.)
Use cases
Exploratory test

Equivalence Part
Boundary Value Analysis
State Transition Test (0 switch)
Use cases
Real-Life Test1
Exploratory test

Use cases
Real-Life Test

1

Syntax Test
Error Guessing
Exploratory test

Reliability Real-Life Test
1
 Real-Life Test

1

Exploratory test
2

Real-Life Test
1

Exploratory test
2

Syntax Test
3

Real-Life Test
1

Error Guessing
Exploratory test

2

Image quality Equivalence Partitioning
Use cases
Real-Life Test

Equivalence Partitioning
Use cases
Real-Life Test

Equivalence Partitioning
Use cases
Real-Life Test

Use cases
Real-Life Test

Interoperability Equivalence Partitioning
Use cases

Equivalence Partitioning
Use cases
Exploratory test

Equivalence Partitioning
Use cases
Exploratory test

Use cases
Syntax Test
Error Guessing
Exploratory test

Usability Process Cycle Test (2 test m.)
Use cases

Process Cycle Test (1 test m.)
Use cases
Exploratory test

4

Use cases
Exploratory test

4

Use cases
Syntax Test
Error Guessing
Exploratory test

4

Safety & norm
compliance5

Elementary Comparison Test
Process Cycle Test (2 test m.)
Use cases

<not applicable> <not applicable> <not applicable>

Serviceability Real-Life Test Real-Life Test Real-Life Test Real-Life Test

1 Note that for Real-Life Test the current SRS and FRS specifications are not sufficient. We lack information about usage of the system in the
field (how frequent/often are functions used, what functions are used most, what characteristics specific applications have, what characteristics
specific users have, etc…). We need input from the User Profiles (or operational profiles) project.
2 Exploratory testing is not merely a test design technique, but a test method. It is aimed at finding faults quickly. This kind of testing is not very suitable for reliability testing because we do it by using PTT/SE (or TAF) tooling
in night batches (in spite of [TMM-TT]).
3 In contrary to [TMM-TT] is Syntax Test not suitable for reliability tests because we do it by using PTT/SE (or TAF) tooling in night batches
4 Exploratory testing is not merely a test design technique, but a test method. It is aimed at finding faults quickly. However the basics of the method can be used for usability tests when focus is on system usage rather than on

finding faults
5 The indicated hazards and norm compliances always needs to be verified.

 60

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 60 of 123

Manufacturabilit
y

Real-Life Test Real-Life Test Real-Life Test Real-Life Test

Security Process Cycle Test (2 test m.) Process Cycle Test(1 test m.)
Exploratory test

Exploratory test Error Guessing
Exploratory test

7.1.11 Samples

See above

7.1.12 Known uses

Currently, this pattern is applied in Philips Medical Systems.

7.1.13 Related patterns

All other test related patterns.

7.2 Incremental Testing pattern

7.2.1 Pattern name and classification

Incremental testing.

Incremental testing (and development) is a phased test approach based on identified risks in
development implementation and testing. The Master Integration Diagram (MID) serves as a
visualization of the available building blocks and the subsequent integration levels in time. It
helps:

 Avoid inefficient big bang integration & test

 Mitigate risks at an early stage in the project

 To have measurable quality confidence (earned value) during project execution

 Improve timing predictability

 Improve product stability & quality.

 Possibility to deliver in stages to internal customers (system integrators)

 To have more uniform test effort capacity

 Result oriented high level project planning and tracking

 Clear overview of dependencies between building blocks and visualization of deliverables
from 3rd parties

7.2.2 Intent

The intent of this process pattern is to maximally support the “integration is leading” approach in
project oriented product realization activities and to provide optimal visibility of the defined
integration steps and integration levels in time.
In the MID it is possible to identify what depends on what. In the sample below you can see the
layered structure of the MID. The sample defines at the lowest level the development
components. The development components integrate with the test environment, test cases are
executed and the final delivery is a product with test results.

Note:

 61

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 61 of 123

It is not intended to provide customers (or next in line organizations that add value) with
evolutionary functionality although if required for design-in purpose it can be agreed to use an
increment as intermediate delivery.
In that case the advantage of early stable tested versions of the product, although not complete,
is that the (internal) customer can start (early) integration as well. Instead of delivering every
week a not tested unstable version to the customer it is now possible to deliver at predefined
moments a stable version to the customer.

7.2.3 Also known as

Generally the methods Cyclic Development, Evolutionary development, incremental
development are strongly related. However the focus is here on Integrations & Testing

7.2.4 Motivation

Problem description:
Multi-discipline product developments often loose valuable time and effort as a result of late
integration of developed components. This is mainly caused by decomposition of work products
to isolated development disciplines and late integration of those work products into the end
product. Integration issues and defects found in this stage are costly, time consuming (root-
cause analysis is more difficult) and result in rework and time slippage. On top of that the
responsibilities for integration activities are often not clear. (I.e. performing HW/SW integration
and acceptance testing of 3rd party deliveries)

The incremental testing approach and the MID deal with this undesired phenomenon by defining
manageable integration steps and tested increments that represent already parts of the
functionality required in an early stage.

7.2.5 Applicability

The pattern is started during the project definition stage and applicable during the
realization/implementation and test phase of product realizations.

7.2.6 Structure

The picture below shows the essence that this process pattern will provide.

 62

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 62 of 123

The process steps of this pattern:
- Set-up

o Define the product components and use these components in the next steps.
o Make a first draft based on the high-level requirements and product

decomposition.
o Perform a components availability and test oriented risk estimation session
o Set-up the MID starting with the high-level risk items

- Approve
o Review MID (test manager + project manager + system designer, for larger

projects team leaders and HW/SW designer as well)

- Monitor
o Monitor the progress during weekly progress meetings, update with actuals of

team schedules
o Monitoring is performed on short term as well as long term activities.

- Change Control
o Discuss changes needed during the progress meeting and adapt the MID

accordingly.
o Changes can come from two sides: 1) Product change requests, 2) Re-planning

7.2.7 Participants & collaborations

The following functions are crucial for this pattern:

 Architect/Senior Designers: Defines

 Test Manager (Integration Manager): Defines

 Project manager: Efficient, End result Risk Defines the number of increments together
with the architect

Architect, Project Manager and Test Manager must cooperate well to ensure all pieces of the
puzzle fit well together: they must define the Integration steps in advance and discuss impact of
changes during the course of the project together.

 63

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 63 of 123

7.2.8 Consequences/pre-requisites (goal/results)

The main goal of this pattern is to have an efficient, fast, controlled product development
process by defining clear integration points throughout the development life cycle. As a
consequence, the project (test) team can always have a tested product base line at their
disposal and therefore can ensure quality of the final product from the very first increment
onwards. Also, if needed, the decision can be taken to release a certain increment, without
having to wait for the next increments to finish. (eg. respond fast to market changes).

7.2.9 Implementation

Aspects to be taken into account for this pattern are:

 The MID is not the equivalent nor replaces the project (task) schedule.
(i.e. Microsoft project planning)
Individual tasks and milestones still need to be planned and tracked in a planning tool.
Coupling, either manual or automatically) the MID and the project schedule at certain
predefined increment positions will make the use of the MID even more powerful.

 Assign critical integration activities to competent people in the project and monitor these
activities in a separate meeting.

 Suggested tools used are MS Visio or MS Excel (easy coupling with project schedule)

 The MID can also be used to calculate test system needs. It provides insight when there
is a peak in the amount of test systems needed.

7.2.10 Sample

 64

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 64 of 123

In the sample it is possible to identify the following “layers”.
- development
- integration
- verification

The purple arrows are defined moments in time. For each of these moments the quality of the
system has been measured. The project has in the end of the project more evidence with
respect to quality.

7.2.11 Known uses

Philips Medical Systems

7.2.12 Related Patterns

Incremental configuration management

7.3 Technical Review pattern

To be filled in

7.3.1 Pattern name and classification

Technical Review.

Technical Review is a process that helps to validate the different deliverables produced during
the development of a product. Some groups in the Serious consortium use this process pattern

 65

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 65 of 123

for all kinds of deliverables (documents, prototypes, models, source code, libraries, etc…). This
process pattern describes how to organize, conduct, and follow through on the review of one or
more deliverables.

7.3.2 Intent

The Technical Review Pattern describes a methodic way to assess the quality of your
deliverables and also to ensure that what you deliver meets the needs of your customers. All the
actors involved in the review process (reviewers and reviewees) are aware of the details of the
process and therefore have a well defined role in it.

The outcome of this process pattern is basically a document including recommendations for
overcoming the weaknesses detected in the deliverable.

7.3.3 Also known as

No other name available yet.

7.3.4 Motivation

Problem description:
There is a big amount of deliverables to be submitted during the development/maintenance of a
SW product or module. The quality of these deliverables will determine the final quality of the
product. Moreover, it often happens that some of the deliverables rely on previous ones, and if
any early deliverable is not properly finished, it will worsen the quality of those relying on it. It is
a proven reality that the cost of fixing defects increases the later they are detected in the
development cycle. This process pattern helps detecting errors early. Besides, using Technical
review implies handing your job to third parties that are experts in the matter: this provides some
external “pair of eyes” to review your deliverable and you get to communicate your work to
others, keeping the team informed of what is going on.

7.3.5 Applicability

The pattern is applicable throughout the complete development lifecycle of software
development.

7.3.6 Structure

The initial context for this process pattern to be applied is: there are one or more deliverables to
be reviewed, the deliverables are ready to be reviewed, and the
development team is ready to have the deliverables reviewed.

The picture below shows the different steps involved in this process pattern

 66

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 66 of 123

1. The development team prepares for review. The item(s) that are to be reviewed are
gathered, organized appropriately, and packaged so that they may be presented to the
reviewers.

2. The development team indicates that they are ready for review. The development
team must inform the review manager, often a member of quality assurance, when they
are ready to have their work reviewed as well as what they intend to have reviewed.

3. The review manager performs a cursory review. The first thing that the review
manager must do is determine if the development team has produced work that is ready
to be reviewed. The manager will probably discuss the development team‟s work with
the team leader and do a quick rundown of what they have produced. The main goal is
to ensure that the work to be reviewed is good enough to warrant getting a review team
together.

4. The review manager plans and organizes the review. The review manager must
schedule a review room and any equipment needed for the review, invite the proper
people, and distribute any materials ahead of time that are needed for the review. The
potential contents of a review package are discussed in the next section.

5. The review takes place. Technical reviews can take anywhere from several hours to
several days, depending on the size of what is being reviewed, although the best
reviews are less than two hours so as not to overwhelm the people involved. The entire
development team should attend, or at least the people responsible for what is being
reviewed, to answer questions and to explain/clarify their work. There are typically
between three to five reviewers, as well as the review manager, all of whom are
responsible for doing the review. It is important that all material is reviewed. It is too easy
to look at something quickly and assume that it is right. It is the job of the review
facilitator to ensure that everything is looked at, that everything is questioned.

6. The review results are acted on. A document is produced during the review describing
both the strengths and weaknesses of the work being reviewed. This document should
provide both a description of any weakness, why it is a weakness, and provide an
indication of what needs to be addressed to fix the weakness. This document will be
given to the development team so that they can act on it, and to the review manager to
be used in follow-up reviews in which the work is inspected again to verify that the
weaknesses were addressed.

7.3.7 Participants & collaborations

The following participants are crucial for this pattern:

 Development Team: people developing the deliverables to be reviewed.

 Review Team: people in charge of reviewing the deliverables

 Review Manager: person coordinating the Review Team

7.3.8 Consequences

The main goal of this pattern is to assure the quality and suitability (in terms of meeting user
needs) of a SW development by validating all the intermediate deliverables. This way, Senior
management is assured that the development team has produced quality deliverables that meet

 67

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 67 of 123

the needs of their user community. The development teams, and the reviewers, have a better
understanding of the deliverables that they are building and how their work fits into the overall
software project. Individual team members and reviewers are likely to learn new techniques
during the review, either techniques applied to the deliverable itself, management techniques
applied during the review, or development techniques suggested during the review to improve
the deliverable.

7.3.9 Implementation

When implementing the pattern, be aware of focussing on reviewing the content of the the
workitems that are being reviewed. Do not apply the pattern mechanistic, but really try to find
the shortcomings or problems of a work item.
Plan reviews, just you would plan other activities of a project. If not, the project team may not
have enough time for reviewing.

7.3.10 Sample

Not applicable, no additional information besides the “Structure” paragraph of this patterns

7.3.11 Known Uses

Used within Ibermatica, Philips and Alcatel

7.3.12 Related Patterns

None

7.4 Verification & integration in incremental development pattern

7.4.1 Pattern Name:

Verification & integration in incremental development: Integrating delta functionality on existing
systems

7.4.2 Intent & Motivation

In incremental system development new developments are based on existing system platform
and system functionality. The latest released HW platform and base lined SW archive (final
release) is the starting point for new developments. As the latest platform is in general delivered
to customers there is in general a commercial request to deliver upgrade packages of the newly
develop functionality as well as initial deliveries. The need for upgrades has an impact on the
verification process of the product due to number of HW and SW configurations of the so-called
installed base which need to be verified.

7.4.3 Also Known As

No other names known

7.4.4 Applicability

The process pattern is to be used in the integration and verification of incremental product
developments

 68

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 68 of 123

7.4.5 Structure

Four plans form the basis of the integration and verification process in the incremental
development:

o Integration plan (IP)
o Master Test Plan (MTP)
o System Verification Specification (SVS)
o Supported Configurations Specification (SCS)

The integration plan (IP) describes all the activities related to the integration of components to
subsystem or system level. In the plan selected configurations are described (test system), the
date when component integrations will take place and the tests which need to be performed on
the particular configuration.
The master test plan (MTP) describes the overall project test strategy, approach, limitations
and test activities to guarantee a well-tested product. This plan is the basis for managing and
tracking all test activities in the project. The contents of the IP and MTP differ little from the IP
and MTP for initial developments. However due to the variety of configurations in incremental
development regression testing is a key issue in the verification in incremental development.
The test strategy is based on several analyses:

 Where are the risks from a technological point of view?

 Where are the risks from a business point of view?

 What norms and standards compliance are required?

The system verification specification (SVS) specifies the system tests to be performed at
system level. Usually the SVS is a total list of the system test specifications for specific
functionality at system level e.g. safety verification and performance verification are part of the
SVS list.

The Supported Configurations Specification (SCS) describes the system configurations
which need to be supported by the new developments. The support of existing configuration is
specific for incremental development as newly developed items can be used on platforms in the
field. As the systems installed base grows over the years the number of to be supported
configurations grows which has an impact on the verification effort to be done. The SCS is input
for the risk analysis as described in par. integration /testing

V-model
The well known V-model is used as the model for initial as incremental developments, the main
differentiator is the use of delta specifications in the requirement definition phase and the re-use
of test specifications in the verification phase.
In the requirement definition phase the updating of the system requirement specification (SRS)
is a substantial amount of work for complex systems. Even small updates of the SRS require
overhead which might result in case of frequent updates in an-workable amount of overhead.
The delta specification speeds up in the initial phase because it supports discussion and
decision making. The delta specification needs however to be incorporated in the SRS before
the start of the verification phase. It is to say the SRS needs to be authorized at the end of the
design/implementation phase.

 69

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 69 of 123

7.4.6 Participants and collaborations

The following people play a role in the integration and verification with incremental development.
- System architect writes the delta system requirement specification and merges the

requirements in the SRS before the verification phase. The system architect is also
owner of the supported configuration specification.

- Test manager writes the system verification specification and is chairman of the
Development Integration Team (DIT). This team controls the system integration and
defines the content of the different test system configurations. A project proposal is
made by the DIT for the number of test systems which need to be allocated by the
project manager. Estimation of verification effort (time, resources) is done by the test
manager on the content of the SRS (functionality) and SCS.

- Project manager and sub project managers use the delta SRS, SCS for input and effort
estimates.

7.4.7 Consequences

Fade in / Fade out operations
As the new developments are usually based on the platform which is currently in production the
factory introduction of the newly tested release has an impact on the fade-in / fade-out between
the new and previous release. At the end of the verification phase systems are allocated in the
factory and build according the newly developed configuration. These so-called pre production
models (PPM) will be delivered to the field however as a first of a kind, assistance of
development on a regular basis is required to solve system problems. A special team with

 70

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 70 of 123

representatives of development and factory has the assignment to control the PPM progress
and solve problems which may arise during the building of the PPM.

Configuration control

For integration and testing we have to differentiate between SW and HW development. In
general the SW development is based on an existing working archive which will be modified for
the new release with new functionality and/or architectural changes. It has preference that after
any SW integration step the archive is tested on its functionality and performance. This
guarantees a stable archive and prevents big bang integrations where archive quality could be
lost. This approach needs be described in the test strategy (MTP) of the project. Maintaining the
quality of the archive is key for incremental testing.

Integration / Testing
In an incremental development approach, a large number of components will be re-used from
the previous product and a limited number of components will have to be changed.
The components are in general developed for the latest platform but could also be used for the
installed base configurations. It has serious commercial benefits when newly developed items
can also be used in the installed base.

The increase of the number of configurations increases also the number of tests, as functionality
has to be tested not only on one configuration but also on all other existing configurations. As
testing time and test resources are limited not all configuration can be tested in the available
time. It is however not only time that impacts the verification also the availability of HW for
building specific system configurations limits the verifications.
In exceptional cases system verifications are transferred to systems in the field as the
configuration could not be build on the development site.

In order to judge the risk of not performing verification a risk analysis is made on the
configurations whether a particular functionality has a high risk of failure on a specific
configuration. If the chance of failure is low and the business impact of failure is low the
verification is limited or not performed at all.

Special attention is given to safety related items. In figure 1 an example of a risk matrix,
representing a graphical view of the risk analysis. The numbers represent certain functionality
on configurations which is to be tested.

 71

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 71 of 123

Figure 1 Test risk matrix

7.4.8 Known use

Philips Medical Systems

7.4.9 Related patterns

Delta specifications in evolutionary developments, Risk based testing, Incremental testing

0

5

10

0 12.5 25

1

2

3

4

5

6

7

8

9 10

11

22

12

13

14

15

16

17

18

19

20

21

Business Impact

Low

Low

High

High

0

5

10

0 12.5 25

1

2

3

4

5

6

7

8

9 10

11

22

12

13

14

15

16

17

18

19

20

21

0

5

10

0 12.5 25

1

2

3

4

5

6

7

8

9 10

11

22

12

13

14

15

16

17

18

19

20

21

0

5

10

0 12.5 25

1

2

3

4

5

6

7

8

9 10

11

22

12

13

14

15

16

17

18

19

20

21

Failure risk
Low

Low

High

High

B
u

s
in

e
s

s
 Im

p
a

c
t

 72

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 72 of 123

8 Supporting Process related Patterns

8.1 Incubators for reducing project risk pattern

8.1.1 Pattern Name and Classification

Incubators for reducing project risk pattern

8.1.2 Intent

The incubator it is a best suitable process to reduce project risk regarding the time to deliver the
first stable project release and to get the skilled people into the project team. Their applicability
is intended in the first phase of the project lifecycle. Two main outcomes are expected from the
incubator process:

 The establishing of the project: scope description, high level architecture description,
defining of related projects, define initial milestones, etc.

 Create community: identify some key assets such as available initial code, people that
will be initial committers, roles in the project.

Some assets addressed:

 Identifying better alternatives (to avoid duplicated effort)

 Provide a clear definition of the main features, and a high level architecture, define
application domain, and identify other related projects.

 Estimating project time line (schedule)

 Engage the best people with required skills (define initial team)

 Manage people expectations and the expected technical impact of the project.

8.1.3 Also Known As

No other known names

8.1.4 Motivation

Currently there are many F/OSS projects, some of them have shaped big communities like
ecosystems, but many others are founded in an isolated way, using the structures of
collaborative development environments (SourgeForge) as their platform; in this way these
projects face the following risks:

 Not achieving critical mass of members (developers, committers, testers), therefore not
conforming a sustainable community. If there, are no collaborative works (contributions),
the project stops and even is cancelled.

 The project not delivering a stable release

 The project not producing any technical impact

Many risks that affect the software development project exits; the incubator is not a magic
solution for these risks; there are other variables that can be taken into account such as:

 73

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 73 of 123

principles of the companies, organizational culture, organizational structure (roles), processes
and tools that support it, etc.

8.1.5 Applicability

It is applicable in early phases of the lifecycle and in more detailed way in the first phase (launch
and establishment) when new projects are launched as part of mature projects; another way is
as projects that cover requirements in new domains; in the above situations, the incubator
pattern can be applied. Also suitable when the start point project is an existing code base.

The pattern offers four characteristics to be evaluated before making a decision about it
application, thus:

 Organization (management)

 Culture principles

 Development process

 Tools and artifacts

Each organization has its own priorities, therefore a value scale must be defined according to
them and thus a risk factor can be taken into account. Then the decision about the best way to
apply the pattern can be taken.

8.1.6 Structure

The incubator is a process to help in the establishment and launch phases of the software
projects, and it can be divided in the following phases:

 Pre-proposal

 Proposal

 Validation/review (iterative phase)

 Graduation from incubation
This process can be integrated as a single phase in the lifecycle development or as a previous
step the actual development, in both cases it should be taken into account as the initial stage in
the project development.

Pre-proposal and proposal phases help to define briefly: the project scope, high level
architecture, some features of the project, related projects and recruiting of the people.

Validation/review phase can be described as an iterative stage where new functionality is
added through development activity with the goal to achieve as soon as possible a stable
release.

Graduation occurs when the stable release is produced and approved by the competent role.
The time from proposal is approved to graduation is known as incubation time.

Pre-proposal and proposal phases would be considered as “project launching”;
validation/review and graduation can be considered as “project establishment” (see figure 1).

 74

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 74 of 123

Pre-proposal Proposal

Project launching

Validation/review

Project establishment

Stable release

Incubation process

Figure 1. Incubation pattern

The entry required for the process:

 Code

 Features

 Requirements

 Related projects

Process outcome:

 Stable release

 Project team

 Experiences

8.1.7 Participants

A well defined structure of roles is required to establish the task, identifying the responsible role
for each phase. As minimum desirable roles are:

 Incubator leader

 Committers (developers, tester)

 Customer (final user)

 Project leader

 Personnel from related projects

8.1.8 Collaborations

The key principles of the pattern are:

 The volunteer work and the collaborative way based on people skills. Thus the best way
to define responsibilities it is to apply roles according to a meritocratic culture.

 The final user must be involved into the incubation phase, a leader that drives the
process is required but the technical decisions (architecture, scope, new functionalities)
should be voted by all (final user, operational people, leader).

Working in this way a stable release will be obtained as the project outcome.

8.1.9 Consequences

 75

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 75 of 123

The main goal of the pattern is to support the establishment and launch of the project; in other
words, avoid the risk of the project go inactive in this phase or risk of not achieve a technical
impact. As the main consequences of the pattern applicability results:

 Proposal clearly defined: rational, main system features, high level architecture of the
new system, system scope, related projects, initial code.

 Getting involved the most skilled people in the project

 Management peoples´ expectations

 Delivering a stable release in short time

8.1.10 Implementation

Some aspects to be taking into account to implement the pattern:

 The existing structure, process of the lifecycle development

 The process must be the first stage of the lifecycle development

 Roles and organizational structure must be clearly defined

 Polices for decisions about termination or advancing project (optimum incubation time,
size and skills of project team) should be in place.

 A progress monitor mechanism is required.

8.1.11 Known uses

Currently these patterns (process) are applied in [APACHE] and [ECLIPSE] that are both
communities of Opens Source, but with some special characteristics as:

 Virtual and centralized structured

 Meritocratic culture (roles)

 System decision make by vote

 Collaborative and distribute development

 Limited resources

 Specific domain application

8.2 Incremental Configuration Management pattern

8.2.1 Pattern Name and Classification

Incremental configuration management

Incremental configuration management is a process that helps managing configuration
management aspects of Software Components during incremental software development. It
helps:

 Identify your configuration items in your products.

 Define & plan changes of these configuration items during an increment.

 Manage configuration items functional growth during & over increments.

 76

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 76 of 123

 Improve product stability & quality.

8.2.2 Intent

The pattern describes optimal ways of working for managing your configuration management
system when using an incremental development approach.

The outcome of this process pattern is:

 Well defined & recorded (traceable) configuration items

 It helps manage the quality level of configuration items during the increments of a project
for the different stakeholders (e.g. developers, testers, external parties).

 Clear lifecycles during the incremental development of a configuration item (e.g. When
changes start and stop)

 Possibility for multiple lifecycles of the same configuration item at a certain moment in
time.

 Managed rules for changing the same configuration items across multiple increments
(parallel development). Preventing that changes for one increment are lost when
changing the same configuration item for another increment that runs partly in parallel.

8.2.3 Also known as

No other name available yet.

8.2.4 Motivation

Problem description:
Incremental developments often struggle with unstable, and therefore inefficient working,
software archives.
During incremental development changes are made to software. Most often this is software that
already exists, and needs (functional) extensions; and sometimes we can start from scratch with
an empty code base. The essence of incremental development is that each increment
implements certain features and converts over time with respect to quality and delivers a stable
product version. Convergences towards a stable software configuration item for one increment
and at the same time making (large) changes to the same software configuration item for a next
increment do not go hand in hand. This process pattern helps solve this problem.

A detailed example of the described problem is given below.
During the course of the (incremental) development a situation will occur that the same SW
config item needs to be changed in more than one increment. The following example illustrates
this and the problems that can arise:
Example: feature X is implemented by config item A and B. Feature Y is implemented by config
item B and C. In increment 1 we want to deliver feature X, in increment 2 we want to deliver
feature Y.

Config
item A

Config
item B

Config
item C

Feature X Feature Y

 77

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 77 of 123

For risk reduction or (development) timing constraints increment 1 and 2 partially overlap in time
(e.g. increment 2 is starting while increment 1 is not yet finished). This means that in this
example configuration item B is modified for increment 1 and at the same time needs
modifications for increment 2.
But increment 1 is coming to an end and a stable configuration item B is needed, so only urgent
bugs can be fixed (minor changes), but no major (design) changes are allowed otherwise
increment 1 will not converge to an end. So here we have a problem.

8.2.5 Applicability

The pattern is applicable throughout the complete development lifecycle of software
development.

8.2.6 Structure

The picture below shows the essence that this process pattern will provide.

Incremental configuration management

CI Development

Project releaseProject release

CI_Life-line

CI_<projectname>_<dev_inc 1>

CI_<projectname>_<dev_inc 2>

CI_<projectname>_<dev_inc n> X

X

Remark: On the CI_life-line, increment synchronization must be

sequential in timesequential in time. increment 1 must merge back to life-line beforebefore

increment 2.

Released

Published

Tested

Built

Initial

The process steps of this pattern:

 At the beginning of a project, the Configuration Items (CI‟s) that this project will deliver must
be clearly identified. Definition of a CI:

 Controlled interfaces with respect to other configuration items.

 “Own” documentation structure.

Increment 1: feature X

Increment 2: feature Y

 78

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 78 of 123

 Independent development, verification & validation.

 “Own” life cycle.
 Form, Fit & Function replacement possible.
 May be used by more then one users/clients

 The content of each Configuration Item must be defined

 The order of increments must be clearly identified.

 Each increment of a CI is developed in a separated configuration management branch

 For each Configuration Item the start moment of development and the moment that the CI
returns to the life-line is determined

 The CI project life-line is used for synchronization across increments / branches.

 Software changes between synchronization points on the CI live-line should be merged.
These synchronization moments must be sequential in time in order to avoid merging
problems in daily practice, and therefore must be planned in advance

 Work in progress can be delivered from an increment branch, with the desired Quality level.

 Final release will be performed from the CI_Project life-line, and can be a starting point for a
next release.

Quality levels for a CI:
In the picture below quality levels are identified through which an CI can go through during
incremental development. Normally the release level is only reached once during the project
lifecycle, the published level is reached once every increment and the others can be reached
several times during an increment:

8.2.7 Participants & collaborations

 79

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 79 of 123

The following functions are crucial for this pattern:

 Architect: Defines the CI‟s, product content per increment and synchronization moments
on the project life-line

 Project manager: Defines the number of increments together with the architect

 Test Manager: Defines the quality levels needed during every increment

 Build Manager: works out product archive structure and assures consistency across the
increments CI‟s and product archive.

Architect, Project Manager and Test Manager must cooperate well to ensure all pieces of the
puzzle fit well together: they must plan Incremental Configuration Management in advance and
discuss impact of changes during the course of the project together.

8.2.8 Consequences

The main goal of this pattern is to enable that the product archive remains stable during
incremental development. As a consequence, the project test team can always have a testable
product at their disposal and therefore can ensure quality of the final product from the very first
increment onwards. Also, if needed, the decision can be taken to release a certain increment,
without having to wait for the next increments to finish. (eg. respond fast to market changes).

8.2.9 Implementation

Aspects to be taken into account for this pattern are:

 Do not choose your configuration items too small; the more configuration items you get,
the more complex the branching & merging of configuration items will get.

 Limit the number of nested branches per increment. Again here, the risk occurs of
getting too much branches, which all have to be build by the build manager

 A configuration management tool must be chosen to implement this pattern. Any tool
that supports branching and merging will do.

8.2.10 Sample

 80

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 80 of 123

Example Incremental configuration management

IP Development

Project releases IP

Beagle

Project releases IP

Beagle

IP_Project-X liveline

IP_Project-X_INC1_TEAMNovice

IP_Project-X_FIX_biplane

IP_Project-X_INC1

IP_Project-X_INC2_TEAMExpert

IP_Project-X_INC2_TEAM_Advanced

IP_Project-X_INC2
21.0.0.0

21.1.1.0

21.0.0.05124

20.2.0.05154

20.2.0.05142

21.1.4.0

21.0.0.05131

21.1.5.0

21.2.1.0

22.0.0.0

2.1.0.0

22.0.0.05145

22.0.0.05151

Released

Published

Tested

Built

8.2.11 Known uses

Philips Medical Systems

8.2.12 Related Patterns

Although many books are written on configuration management, no other configuration
management pattern like above described has been found so far.
However, some of the items described in this pattern can be found in: High-level Best Practices
in Software Configuration Management by Laura Wingerd & Christopher Seiwald from Perforce
Software

8.3 Defect Rootcause Analyses pattern

8.3.1 Pattern name and classification

Defect rootcause analysis

8.3.2 Intent

 81

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 81 of 123

Defect root cause analysis is a process / method to enable organizations to determine the
weaknesses in their development processes and products and to decide what changes they
need to make and where they have to be introduced.
The intention is to encourage individual learning and to transfer from individual learning to
organization learning about our mistakes.
This is done by identifying the root causes of all defects (problem reports (PR)), which are
submitted during de development process of a product.
In this way we want to:

 Develop organizational understanding of the causes of a particular class of defects

 Fight the cause, not the symptom

 Learn from the mistake, not make the mistake over and over again

 Prevent defects, instead of solving them

 Shift reactive responses to defects toward proactive responses

8.3.3 Also known as

Other names or related methods are:

 Fault tree analysis

 Change analysis

 Causal Factor Tree analysis

 Fish-bone diagram or Ishikawa diagram

 Failure analysis

8.3.4 Motivation

If there is an unwanted situation, which consumes resources and tends to happen in a
repeated fashion then it might be beneficial to figure out what is really causing this situation
to occur and remove it so the situation does not occur again.
Benefits of this approach are:

 Reduction of defects

 Product quality improvement

 Increase of customer satisfaction

 Less time needed for testing and defect solving

 Shorter development / project duration time

 Decrease of development costs

 Increase of income

8.3.5 Applicability

The pattern is not only applicable throughout the complete product development lifecycle,
but is also applicable to many other fields of origin:

 Safety based root cause analysis
Accident analysis and occupational safety and health

 Production based root cause analysis
Quality control for industrial manufacturing

 Process based root cause analysis
Analysis of business processes

 82

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 82 of 123

 System based root cause analysis

8.3.6 Participants / Collaborations

The following functions are involved in this pattern:

 The developers, testers, designers, architects do the investigation and analysis of
the root cause of the each individual defect and the information is saved in the defect
record in the defect tracking system.

 Managers (project managers, resource managers, process owners etc) have to
motivate and instruct people:

o to perform the root cause analysis,
o to deploy the process, to analyze the general root cause of a specific class of

root causes (to define trends or patterns)
o to define and implement improvement actions.

Management should also force a breakout of the pressure-driven reactive habits and
use the accumulated knowledge to drive lasting improvements and to open the way
to a proactive behavior.

8.3.7 Consequences

After analysis of the root causes of the defects one must define and implement the
improvement or corrective actions. The actions might be:

 Improve requirements management and system engineering process
(i.e. content review, traceability)

 Introduce performance engineering (i.e. performance modeling, budgeting and
measurements)

 Increase use of static & dynamic code analysis tools (i.e. coding standards checking,
memory leak detection, code coverage analysis)

 Improve tests (i.e. test strategy, test environment, test automation)

 Extend training on architecture and application domain and improve system design
skills

 Improve review process (i.e. train employees, act on metrics, deployment,
management attention)

 etc
A precondition for doing defect root cause analysis is that the analysis and the administration of
the findings about the root causes are done properly. (Uniform way and with the right quality
level.)
This root cause analysis activity must be taken into account in the project and department
planning as well as the deployment of the results and the associated actions (budget, time).

8.3.8 Implementation

Defect root cause analysis is a process designed for use in investigating and categorizing
the root causes of defects with product development and production impacts (quality,
reliability, robustness etc).

 83

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 83 of 123

Simply stated, Defect root cause analysis is a method designed to help identify not only
what and how a defect occurred, but also why it happened.
Only when investigators are able to determine why a defect has occurred, they will be able
to specify corrective actions to prevent, that this type of defects will occur once again.
Understanding why a defect has occurred is the key to develop effective actions to solve the
defect now and in the future.

The Defect root cause analysis is a four-step process:

1. Data collection
2. First order root cause analysis

Defect root cause classification and presentation of results
3. Second order root cause analysis
4. Action generation, implementation and monitoring results

The first two steps of this process is the Pareto of the defect root cause analysis.

8.3.8.1 Data collection

The first step in the analysis is to gather data. Each defect has to be analyzed deeply.
Without complete information and an understanding of the defect, the causal factors and the
root causes associated with the defect cannot be identified. The majority of time spent
analyzing a defect is spent in gathering data. All the data is written down in the defect record
in the defect tracking system. The defect tracking system has been extended with a root
cause categorization field to classify the root causes of the defects in predefined classes or
categories (where are the most root causes of the defects generated).

Examples of first order classes are:

 Requirements

 Design

 Implementation

 Installation / configuration

 Defect hardware

 Process

 Subcontractor component

8.3.8.2 First order root cause analysis

In this step a first filtering of the total number of defects is done using the first order root cause
classes as defined above.
After a number of defects have been analysed and the root cause categories have been filled in
correctly, as described above, one can make an overview of the root cause classes to find out
what the major root cause classes are on which one has to focus on for a more detailed
analysis (critical in the whole process is to focus on a reasonable subset of all defects). This is
done with the help of the so called “Four-blocker” sheet. In this sheet an overview is shown of
the total number of defects and an overview of for instance the four major root cause classes of
the analyzed defects. (Pareto diagram of de defect root causes)

 84

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 84 of 123

8.3.8.3 Second order root cause analysis

The second order root cause analysis is the next step in analysing the real root cause of a
defect. In this step a more deeply analysis of a specific root cause class will be done. There are
a number of dimensions that may in fact be at the root of each of the defects, that is, there may
be several underlying causes rather than just one. The second order root causes can be divided
also into a number of categories, for example:

 Phase related root causes

 Human related root causes

 Project related root causes

 Other root causes

Phase related root causes
These root causes are related to the standard development phases or documents:
requirements, architecture, system design, unit / component desing, implementation etc.
Qualifications of phase related root causes are:

 Incorrect,

 Incomplete

 Ambiguous

 Not aligned with customer needs

 etc

Human related root causes

 Change coordination

 Lack of domain knowledge

 Lack of system knowledge

 Lack of tool knowledge

 Lack of process knowledge

 Individual mistake

 Introduced with other repair

 Communication problem

 Missing awareness of need of documentation or defined way of working

 etc

Project related root causes

 Time pressure

 Management mistake

 Caused by other product

 etc

Other root causes
If needed other root causes can be defined as well of course.

Tools that can be used to identify the real root cause are:

 Fish-bone diagram or Ishikawa diagram

 Fault tree analysis

 Root cause map

Corrective action generation, implementation and monitoring results

 85

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 85 of 123

The last step is the generation of corrective actions for preventing the recurrence of the
identified root causes of the defects.
The actions should directly address the root causes identified during the investigation.
The rootcause analyst is often not responsible for the implementation of the corrective
actions proceeded from the analysis. However, if the actions are not implemented, the effort
spent in performing the analysis is wasted. Organizations need to ensure that the corrective
actions are tracked to completion and results are monitored to show the effect of the
actions.
The corrective actions are also shown on the “Four-blocker” sheet.

8.3.9 Sample

8.3.10 Known uses

This method is also used to find the root causes of the problems encountered in
manufacturing the medical systems of PMSN and to startup improvement actions to reduce
the manufacturing problems and to increase the product quality.

Nr Problem /Action description 8-D (action) status

8D

ref.

Action

owner

Planned

end date

Actual

end date issue/ required action Status

Action

Owner

Planned

end date

Actual

end date

1 8-D for Implementation currently in D5: Corrective action taken

1 2nd action/8D for ImplementationStill issues, more time needed for D6

2 action/ 8D for Requirements

3 action/8D for Design

Action plan Issues/action for ESCALATION LEVEL

FourBlocker ROOT CAUSES of DEFECTS for Product EPW in Project WEP

Defects EPW (Project WEP)

0

20

40

60

80

100

120

140

160

Ja
n-

05 Fe
b

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep O

ct
N
ov

D
ec

Ja
n-

06 Fe
b

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep O

ct
N
ov

D
ec

#
 D

e
fe

c
ts

TOTAL NUM BER OF DEFECTS Submitte, Assigned, Accepted, Invest igated, Opened

Resolved Target

Submitted, Assigned, Accepted, Invest igated, Openen

Pareto Defect Root causes

based on: default last 3 months

46

13
11

3

0

5

10

15

20

25

30

35

40

45

50

Implementation Requirements Design Hw problem

A
b

s
o

lu
te

 c
o

n
tr

ib
u

ti
o

n

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
u

m
u

la
ti

v
e
 c

o
n

tr
ib

u
ti

o
n

contribution % contribution cum

 86

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 86 of 123

8.3.11 Related patterns

Incremental testing as used by PMSN. Defect root cause analysis on the encountered defects in
the previous increment tests can be used to prevent defects in the next increments.

 87

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 87 of 123

8.4 Proactive Quality Assurance pattern

8.4.1 Pattern name and classification

Pro-active Quality Assurance is a way to implement QA activities during a project or
increment.

8.4.2 Intent

To provide project staff, management and stakeholders with appropriate visibility into
the processes used within the projects and the deliverables created. Prevent non
compliances and improve effectiveness of process execution by pro-active attitude,
such as signaling, facilitating, monitoring, coaching and measuring and analyzes.

8.4.3 Also known as

Process Quality Assurance
Product Quality Assurance
Project Quality Assurance
Quality Management

8.4.4 Motivation

Normally QA is reporting at the end of an increment or project to control the right use
of the processes and procedures. They are not involved in the daily way of working in
the project.
Results of the late reporting:

 Hard to recover or repair mentioned issues.

 Not taken seriously because timing priority.

 Seen as police agent.

 Problems in the processes are not been solved.

With pro-active quality assurance you are capable to inform your stakeholder about
the quality aspects of the project at any time of the project, this in contrast to the
normal QA-reporting after a release or increment closure.
Other motivation aspects:

 QA will be part a real participant of the project team.

 QA process and quality problems will be discussed early in time.

 At any given time, the Quality Officer can inform management clearly on the
remaining quality risks.

 No quality surprises at the end of a project.

 Give the organization information to improve their Quality System and their
way of working

 88

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 88 of 123

8.4.5 Applicability

Pro-active QA can be applied for all product realization projects and all kind of
development processes.
Typical situations are:

 Time-to-Market driven projects

 Technology driven projects with high uncertainties or that are difficult to plan

 Projects with complex software/hardware combinations

 Projects with a software only context

 Projects with very heave quality requirements (medical or aviation)

 Complex organizations with complex quality systems.

 Organizations who have to deal with external norms and rules
In general, difficult to plan projects with high risks in combination with Time-to-Market
pressure.

8.4.6 Structure

Pro-active QA has two main activities:

 Daily activities as project support, monitoring & control and reporting.

 Internal audits.
The figure below describes the areas of responsibilities of the QA Officer

 Quality System: Product Creation Process and Development department manuals,

Project plans, QA plan, QA Year plan and QA Internal Audit plan

QA Project Support
QA Project Monitoring

& Control
QA Internal Audits

QA Project Traffic Lights QA Internal Audit Reports

non compliances solved

by project

non compliances solved

by organization

Input

Activities

Reporting

Non compliances

QA Internal

Audit Metrics

QA Overall Project

Traffic Light

non compliances database

Quality Status

Report

 89

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 89 of 123

8.4.7 Participants

At least the following roles participate in Pro-active QA Process:
Project Managers, Team |Leaders, QA Management, QA Officers, Management Team
of the organization, participants within the projects

Related processes are:

 All project management processes

 (Peer) review processes (walk through, inspections, comment collections and code
reviews)

 Documentation processes

 Verification and validation processes

 Escalation processes

8.4.8 Collaborations

The base for pro-active QA is the collaboration between the project manager / team
leaders and the QA Officer. The have to have contact frequently to talk about the
plans in relation with the Quality processes and procedures in formal meetings as well
as informal “coffee machine” talks (support and monitoring).

Further there has to be a frequent contact between the project participants to hear and
seen the daily way of working and where necessary to deploy the procedures or to
train the participants (support, monitoring and control).

There is a less frequent (monthly) contact with the stakeholder to invest there
satisfaction, possible wishes and improvements.

Organizational there is a monthly feedback session with the line management to give
the QA opinion about the status of the projects and about the status of the processes.

8.4.9 Consequences

This pattern supports and proves the objectives by:

 Facilitates the communication between all parties involved in the running project

 Clear reporting possible at any time in the project for all kinds of participants

 Early detection of possible quality issues

 More knowledge and understanding within the projects and the management of
the actual quality processes and procedures

 Tracking of quality issues during the devilment (not afterwards).

 90

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 90 of 123

8.4.10 Implementation

This way to implementing quality assurances ask a lot of the skills of the Quality
Assurance Officer.
In special the QA Officer has to be:

 A net worker, working by walking around

 Confidently, straight, open-minded

 A motivator.

Other point of attention is the time you have to spend on quality issues early in the
project, but this investment is proven less than the time and money you have to spend
by finding quality issues late in the project.

Last main requirement is the separate communication line to the management of the
organization. Necessary to improve issues over project level and to escalate issues
between the project leading and the QA Officer within the project. Quality Assurance
always needs a independent escalation line.

8.4.11 Sample

Example of front page of monthly traffic light report used for information to the project
participants and input for the QA Overall project traffic light report :

 91

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 91 of 123

QA Overall project traffic light report used for the monthly management information:

Project Name

O G O G R G O G

G G G G G G G G G G G O G G

G

R R G G R G O G G O R R O O G G

G G G G R R G

G

O R O G G G R G R O O G O G O G G G G G G O O O O O O

O G G G G G G G G G G G G O G O G O O R O

G

G O O G G G G R O G G G G G G O O G R O O G G O G

G G G G G G R R O G R G G G G

G O G G O O O R G O G G O G O G G O O O O O O O R R

G G G G O O O O G R R R R R R O R O G O O R R O R O

O O

Project Name
Sub project 1 Sub project 2 Sub project 3 Sub project 4

Overall Project Process Status

Sub project 1 Sub project 2 Sub project 3 Sub project 4

Project Name

Project Name
Sub project 1 Sub project 2 Sub project 3 Sub project 4

Sub project 1 Sub project 2 Sub project 3 Sub project 4

Project Name
Sub project 1 Sub project 2 Sub project 3 Sub project 4

Project Name
Sub project 1 Sub project 2 Sub project 3 Sub project 4

8.4.12 Known uses

Currently, this pattern is applied in Philips Medical Systems.

8.4.13 Related patterns

Quality Assurance driven Process Improvements pattern

8.5 Quality Assurance driven Process Improvements pattern

8.5.1 Pattern name and classification

 92

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 92 of 123

Quality Assurance driven Process Improvement. This pattern shows how to derive &
implement improvements from non-compliances found by QA audits.

8.5.2 Intent

To prevent pro-actively future process non-compliances, which are currently found in
several development projects. The approach is that the non-compliances are solved
by removing the root cause that they will not be found in new development projects.

8.5.3 Also known as

 Process/Product/Project/Software/Development Quality Assurance

 Software/Development Process Improvement

 Quality Management

 Learning organization

8.5.4 Motivation

In development departments an independent Quality Assurance group has been
institutionalized. This Quality Assurance group verifies periodically process
compliance in projects and reports the results to project- and line management. After
agreement with the QA representative the project manager is responsible to track the
non-compliances to closure, meaning implementing the corrective action and
removing the root cause.
When a development department executes several projects, one can observe that a
number of non-compliances are only related to one project, but there will also be non-
compliances which are visible in several projects. When a non-compliance is identified
in only one project, this is probably a project issue, because other projects succeed in
implementing the process on the right way. The project manager is responsible for the
corrective action.
When non-compliances are identified in more projects, a corrective action can be
necessary on department level. Possibly the related process does not fit the
organization or the process is not well deployed. In many departments only corrective
actions on project level are initiated resulting in the observation that the same non-
compliance is found again in new projects, since the root cause of this non-
compliance has not been removed.

8.5.5 Applicability

This pattern can be implemented in all development departments running projects.
Pre-conditions for implementing this pattern are:

 A quality assurance group has been institutionalized. This group reports
periodically the process status of the development projects and identifies the
process non-compliances. These non-compliances can be traced to the related
process area.

 Process (improvement) ownership is institutionalized. Examples of this ownership
are SEPG, Process Improvement Coordinator, Ownership by development
manager(s), …

8.5.6 Structure

The process flow below shows the structure how Quality Assurance initiates process
improvement activities in cooperation with the process owner.

 93

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 93 of 123

1. First step in the flow is to analyze the list of non-compliances. Start with making a
non-compliances list sorted on impact, followed by plotting each non-compliance in
a matrix. One axis of the matrix defines the benefit level on impact (i.e. scale low
till high) and the other the ease of implementation (scale easy till hard). Use this
information to create the proposal list, start with "low hanging fruit" (easy to
implement).

Analyze Non-compliances

by QA group

Define Improvement plan to

solve non compliances

Identify and analyze root

causes of non compliances

to be solved

QA group discuss and

agrees potential

improvements with process

owner

Lists of non-compliances

to be solved by

department

Improvement plan

Analysis of root causes

Proposal of potential

improvements

Interviews

- QA reports

- List on non

compliances

Implement Improvement

plan including verification if

plan is effective

1

3

4

5

2

2. The Quality Assurance group discusses the proposal list of potential improvements

with the process (improvement) owner and agrees with the non-compliances to be
solved.

 94

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 94 of 123

The Quality Assurance group starts with interviewing to identify the root-causes of the
selected non-compliances and looks for best practices. During the interviews, the
question “why” will be repeated till the real root cause is identified. It is also useful to
find the rationale why other projects can produce best practices under the same
circumstances.
3. When the root causes are known, the Quality Assurance group and the process

owner define the improvement plan to solve the non-compliance. This
improvement plan must comply with Plan Do Check Act (PDCA). The process
owner is responsible for the implementation of the improvement plan. The Quality
Assurance group checks the status of this plan and reports it to higher
management.

4. When the plan is defined, one can start with the implementation. The
implementation can only be closed after the verification shows that the corrective
actions are effective.

This flow must be frequently repeated (e.g. quarterly).

8.5.7 Participants

Quality Assurance Group and Process (improvement) owner are participants of this
pattern. They define the improvement plan and the project members implement it to
ensure sustainable results.
All development processes are part of the product realization and be covered in this
way and you can embedded this approach in the Quality Assurance process.

8.5.8 Collaborations

The base for this pattern is the collaboration between the Quality Assurance Group
and the process (improvement) owner. They decide together about the content of the
proposal list of potential improvements and ask project management to confirm this
decision. Together they define the plan to solve the non-compliances. Project
members will be involved during the implementation plan to get fast feedback and to
accelerate the acceptance of the new way of working.

8.5.9 Consequences

This pattern results that non-compliances which are identified in more projects are
solved effectively. When non-compliances are not structurally solved on department
level, the root-cause will not be removed and there is a big chance that the same non-
compliance will return in new projects.

8.5.10 Implementation

The objectiveness and well argumented Quality Assurance reports form the basis for
this pattern. This improves the acceptance by the project manager and simplifies the
identification of non-compliances.
Other point of attention is the root cause analysis of the non-compliance. When one
stops too early with the question “why” during the investigation of a non-compliance,
one discovers the symptom, but not the real root-cause. So don‟t stop questioning
“why” until the real root cause has been identified
The final success factor of this pattern is that all corrective actions, including the check
actions are performed thoroughly. For that reason it is recommendable to report the
status of the improvement plan in the (development) management meeting.

 95

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 95 of 123

8.5.11 Sample

Theoretical example for an overview of Quality Assurance reports listing non
compliances.

Example of a matrix, used to select the potential improvements.

 96

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 96 of 123

An theoretical example of an improvement plan (PDCA compliant). The root causes
are also recorded in this plan.

8.5.12 Known uses

Currently, this pattern is applied in Components X-ray, which is a Business Line within
Philips Medical Systems.

8.5.13 Related patterns

This pattern can be implemented as extension on the pattern “Pro-active Quality
Assurance”.

 97

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 97 of 123

8.6 Estimation in evolutionary SW development pattern

8.6.1 Pattern name and classification

This estimation pattern provides principles and practices that can be used during the
execution of the process of project estimation. Although the contents of this pattern is
somewhat focused on software estimates, the principles and practices also apply to
estimates in other disciplines.

8.6.2 Intent

This pattern presents estimation methods/techniques, elaborates on size estimation
and the use of historical data and gives a number of estimation examples. This
document is intended for Project/Team Leaders and persons involved in estimates for
projects or teams

8.6.3 Motivation and applicability

When estimates are made at the very beginning of a project, the level of detail is low
and the uncertainties typically are at their largest. This is reflected in the accuracy
(bandwidth) of the estimate. As time and the project progress, more detailed
information comes available that can be used to refine the estimate. While the depth
of decomposition of the system to be developed increases and uncertainties
decrease, the associated bandwidth normally declines over time, as depicted in Figure
1

Initially, at the concept stage, a vague definition of the project may be available.
Though the requirements may not be fully understood, the general purpose of the
software to be developed can be recognized. At this point, estimates with an accuracy
of plus or minus 50 percent are common.
After the requirements are reasonably well understood and, optionally, a feasibility
study has been done, a function-oriented (e.g. requirement based) estimate may be

 98

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 98 of 123

prepared. At that point typically around the scope commitment milestone, estimates
with an accuracy of plus or minus 25 percent should be possible.
Finally, after the project‟s (global) design phase has been done, an implementation-
oriented estimate may be prepared. This estimate is based on the project‟s work
breakdown structure (WBS) or on incoming Change Requests during the project‟s
execution phase. This estimate is expected to be accurate within plus or minus 10
percent (see Figure 2).

It is important to recognize that estimation methods/techniques that can best be
applied will depend on the (software) macro lifecycle stage. See Figure 3 for
estimation technique selection criteria and related advantages and disadvantages.

 99

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 99 of 123

Methods/techniques of estimation:
Analogy Method
This approach (see [BOEHM]) involves relating the proposed project to previously
completed projects of similar application, environment and complexity.
The basic steps are:

1. Break down the requirements to the granularity possible
2. Identify similarities and differences between previously developed work

products
3. Identify comparable work products
4. Obtain the size information of the work products, using the data of the work

product
5. Consider this size information as the basis for estimating the size of the current

work product
6. Generate a size estimate
7. Calculate the required effort by multiplying the size estimate with the project‟s

historical productivity figure

 Fuzzy Logic
When no closely related work products are present but a number of work products in
the same domain are available, it is possible to define a scale from measured sizes of
the existing work products. Such a “fuzzy logic” scale has for instance five classes:
very small, small, medium, large, and very large. The total size of the new work
product is given by mapping it into one of these classes. The calculated standard size
for the selected class is taken as the size estimate. The basic steps are:

1. Determine the size of all historical elements (e.g. code modules) in the same
domain

2. Calculate the logarithms of these sizes
3. Calculate the average and sigma of the logarithms

 100

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 100 of 123

4. Define the five typical class sizes as average + n * sigma, where n is -2,-1,0 1,
2

5. Calculate the reverse logarithm on the five values obtained
6. Categorize each element into one of the classes
7. Use the typical class size as the estimate for the element size.

Matrix Sizing Method
The matrix estimation method is an intermediate between analogy based estimation
and fuzzy logic estimation. The basic steps are:

1. Identify a metric for size and a metric for complexity.
2. Setup a 3x3 matrix with Small, Medium, Large columns and Simple, Normal,

Complex rows.
3. Find a number of typical historical examples for each of the nine boxes and

enter their actual size and/or effort in the box.
4. For each box, determine the average size and/or effort.
5. Classify the item
6. Take the average value from the corresponding box as estimate (see Table 1).

 Table 1 Size - Complexity matrix - Application example

Standard Component Sizing Method
Standard component sizing (see [SWEST]) is based upon information that is available
with increasing precision from the feasibility study phase through the testing phase.
This information is provided by designers, programmers, testers or others familiar with
the project.

Change Sizing
This approach (see [SWEST]) estimates the size of a software system when it
consists of new code and existing code that will be modified in various ways. The
following categories of code can be distinguished: added, modified, deleted, and
same.
The amount of new code can be estimated using any estimation technique. The
amount of code in each of the other categories can be estimated using the standard
component sizing technique. The principal merit of the change sizing technique is that
it takes explicitly modifications into account. After having estimated the code size in
each of the categories, effort can be calculated using effort ratios per category in
combination with historical productivity data. In literature (see [SWEST]) numbers for
the effort ratio for the code categories are available. As a starting set, the values in
Table 2 are reasonable to start with.

Table 2 Effort ratios

 101

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 101 of 123

Wideband Delphi Like Technique (worked out in next chapters)

8.6.4 Structure

The Wideband Delphi like Technique is a supporting technique that may be used in
combination with all other estimation techniques. Instead of several estimation rounds,
a single estimation round is often applied for a Wide Band Delphi estimation session in
this case. The Wideband Delphi method (see [BOEHM] and [SWEST]) described in
this chapter can be used in several steps of the project estimation process.
This method is used to estimate the size of a work product or to estimate the effort
required producing the work product. The Wideband Delphi method is a group
approach for reaching convergence on estimating the size and/or effort of an activity.
It is primary a systematic approach for sharing basis for estimation and assumptions
amongst various people involved in estimating an activity and hence facilitate a more
accurate estimation.

 Figure 4 Flowchart Wideband Delphi like Estimation

Step 1. Pre-work
The moderator selects at least 3 estimators. The estimators preferably should have
some stake in the activity. The moderator prepares the kick-off session by filling in the

 102

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 102 of 123

estimation forms with all the default data filled in. Depending on the development cycle
phase of the project, the architect will support him creating the list of deliverables and
the corresponding work breakdown structure. Invitations are sent out to estimators
with details of date, time and venue of the kick-off meeting. The Wideband Delphi Like
estimation approach is explained for those who are not familiar with it.

Step 2. Kick-off
The moderator provides the estimators with all the input documents (including
estimation forms with all the default data filled in), with details of the estimation
session (date, time, venue, subject to be estimated (size3, effort and/or critical
resource usage)) and estimation technique(s) to be used. The work breakdown
structure is discussed (is it clear, is it complete) and general assumptions and cost
drivers (e.g. complexity, available application experience) are looked at. Per type of
work breakdown structure item a common view is determined and agreed. If
necessary, the work breakdown structure is updated and re-distributed among the
estimators. If needed, the estimation technique to be used is explained. The
moderator sets the convergence range (e.g. 15 %), depending on the development
cycle phase of the project.

Step 3. Preparation
Every estimator individually produces his own independent estimates of the size
and/or effort involved for the activities. The estimates should be based on the
estimation form provided; any extra or changed assumptions and newly identified risks
should be recorded on the form.
Each estimator completes the appropriate columns in the table of the estimation form
and the estimation session number and hands over his form to the moderator. The
estimators should not share their estimates during preparation.

Step 4. Share basis and assumptions
The moderator checks that all estimators have completed the estimation forms,
combines all estimates, assumptions and risks in one sheet and calculates the
average estimates. The moderator invites all estimators to share their estimation basis
and assumptions in the estimation session.

Step 5. Share estimates
The moderator invites all estimators to share their individual estimates.
The moderator collects the information forms from the estimators and completes his
own estimation form with the averages, standard deviations and assumptions of the
(re-)estimates.

Step 6. Estimates within range?
If the estimates for individual activities are all within the convergence range then the
meeting is concluded (see step 8). Else, the moderator invites the estimators to re-
estimate, based on the shared basis and assumptions (step 4) and to open discussion
(step 7).

Step 7. Open discussion
If the deviation is greater than the convergence range:

 The moderator invites the estimators to discuss these points

 The moderator asks the estimators with dissenting opinion to argue their opinion.

Step 8. Finalize estimates
If the deviation does not reduce to under the convergence range, decide explicitly in a
final discussion whether a dissenting opinion must be discarded as an outliner or that

 103

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 103 of 123

the average of all estimates will be considered as the final estimate, consequently with
a large variance. The amount of variance can influence the contingency to the
identified risks.
A final estimate is agreed and recorded in the estimation form.

Exit Criteria (End)
Convergence or agreed non-convergence.

8.6.5 Participants

Project/Team Leaders and persons involved in estimates for projects or teams.
Roles:

 Responsibilities Tasks
Moderator

facilitate the
estimation
session

Appoint at least 3 estimators and optional additional
estimators:
 • Estimators are the developers who will (or are

likely to) carry out the activities to be estimated.
 • Additional estimators include staff with previous
 experience of similar developments or with in-

depth knowledge of the development being
estimated.

Act as a chairman and ensure that the estimators do
not get into unproductive discussions.
Record the estimates.
Conclude the estimation meeting with converged
estimates or reconvene meeting at a later date in
case of non-convergence

Estimator produce
estimates

Produce estimates using a method the estimator is
comfortable with

8.6.6 Collaborations

Collaboration between the several project teams, functional disciplines, team
members and local experts is needed for good estimations.

8.6.7 Consequences

Estimation reliability
Expert judgment based estimation depends heavily on the skills and objectivity of
individual estimators and their past history developing similar products. Often when an
expert-based estimation method is used, no consideration is made for the skills and
capabilities of others to do the estimated task. A technique like Standard Component
Sizing can help to minimize the impact of varying skills and capabilities on the
estimate and can give an indication of our confidence in the estimate.

Historical data
Nearly all estimation techniques rely on the availability of historical data. Generally
speaking, the more historical data is available, the better the estimations can be. So, it
is essential that accurate and representative data from completed projects is available.
The use of following historical project information can significantly contribute to better
size and effort estimates:

 104

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 104 of 123

 (Changed) size of project deliverables (e.g. number of new and modified Lines
of Code (LOC))

 Effort expended on pizza items, project deliverables and project activities

 CR/PR information (e.g. counts, effort expended, severities)

 Review data (e.g. review effort, number of major remarks)

 Test data (e.g. test effort, number of planned and executed test cases)

Estimation Tips:
Allow time for the estimate and plan it.

 Rushed estimates are inaccurate estimates. Take the time to plan the
estimation activity itself so that it can be done well.

Use data from previous projects.

 By far the most common practice used for estimation is comparison with
similar, past projects based solely on personal memory. This practice is
associated with cost and schedule overruns. The use of documented data from
similar past projects will significantly contribute to cost and schedule precision.

Use developer-based estimates.

 Estimates prepared by people other than the developers who will do the work
are less accurate than estimates prepared by the developers who will do the
work. When estimator-developers do the estimate and the work, meeting their
own estimates reflects positively on both their estimating and work abilities.

Estimate by walk-through.

 Have each team member estimate pieces of the project individually and then
have a walk-through meeting to compare estimates. Discuss differences in the
estimates enough to understand the sources of differences. Work until you
reach consensus on the high and low ends of estimation ranges.

Estimate at a high level of detail.

 Base the estimate on a detailed examination of project activities. In general,
the more detailed your examination is, the more accurate your estimate will be.

Don‟t omit common tasks.

 People don‟t often omit tasks on purpose, but when they‟ve been ordered to
develop a product in the shortest possible time, they don‟t go out of their way
to look for extra tasks.

Re-estimate in a later stage, when more information is available.

 When estimates are made at the very beginning of a project, the level of detail
is low and the uncertainties and risks are typically at their largest. The more
details are known about e.g. requirements, architecture, people, methods and
tools, the more accurate the estimates will be. Therefore it is important to re-
estimate as the project progresses.

Use several different estimation techniques and compare the results.

 Try several estimation techniques in order to avoid the weakness of any single
method and to capitalize on their joint strengths. Study the results from the
different techniques.

 105

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 105 of 123

8.6.8 Implementation

Selecting size metrics
It is generally agreed that the size of the products is the predominant characteristic in
determining how much effort is needed to build it. Suitable size metrics are those
project attributes that, in the mind and heart of the estimator, lead to higher/lower
levels of effort or longer/shorter project schedules.
Furthermore, good size metrics for estimation purposes are those that:

 Have a positive correlation with development effort

 Have historical data available

 Are objectively (and preferably automatically) measurable
”Objectively measurable” means that repeated measurements of the size result in the
same value for the metric. Automation of the size measurement is implied and strongly
recommended.
Relationship between size and effort can be derived when relevant and sufficient
historical data is available. This means that comparable components exist from which
the size-effort relation can be determined. Each type of deliverable or activity has a
need for its own size definitions. It is important to find and use the right one each time.
For examples see Table 2.

Deliverable/Activity type

Description of size measurement

Make/Review/Rework requirement specification Number of requirements;
Number of added + modified pages;
Complexity/size categories

Make/Review/Rework design specifications Number of classes;
Number of screens (GUI);
Number of added + modified pages;
Complexity/size categories

Make/Review/Rework Code Number of added + modified non-commented lines of code;
number of classes;
Complexity/size categories

Make/Review/Rework verification specifications Number of added + modified test cases;
Number of added + modified pages;
Complexity/size categories

Make/Review/Rework verification reports Number of test cases to be executed

PR solving Number of PRs

Integration Test Number of test cases to be executed

Table 2 Examples of size metrics

8.6.9 Sample

Example of an estimation sheet:

 106

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 106 of 123

8.6.10 Known uses

Currently, this pattern is applied in Philips Medical Systems.

8.6.11 Related patterns

All Patterns used in evolutionary development.

8.7 Baseline auditing and configuration status accounting
pattern

8.7.1 Pattern Name and Classification

Configuration status accounting: reporting on the indicators that contribute to the
status of a configuration item. This can be done continuous (e.g. daily) or on regularly
(e.g. every 4 weeks).

Baseline auditing: check if those indicators meet the criteria for promotion to a new
status. This new status typically is a requirement for passing milestones during a
project.

Both are measuring the same indicators. The status accounting is way to check
regularly if the indicators will meet the criteria for the baseline audit. This creates the
possibility to start corrective actions in time when necessary

 107

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 107 of 123

8.7.2 Intent

By performing Configuration Status Accounting on regular base, a prediction can be
done during the project whether the criteria for the next milestones will be met or not.
It gives project management the possibility to start corrective actions in time, so the
final check (the baseline audit) will reveal no surprises.

8.7.3 Also Known As

Configuration auditing
Status accounting

8.7.4 Motivation

In a project, there are several milestones to be passed. In the days before passing the
milestone, some people start running around very stressed to gather all kind of
information to determine the status of the deliverables.
Examples of the information they‟re looking for are:

- which functionality has been delivered
- what is the status of our documents
- did everybody use the same interfaces and compiler
- has everything we promised been delivered

The stress becomes even more in case some of the answers cannot be answered or
the answers are not satisfying.

But why wait until the days before the planned milestone to collect the information?
By collecting and checking this information during the project, a prediction can be
done on forehand whether the milestone can be passed or not at the planned date.
Corrective actions can be defined in time, so there is much less stress when the
milestone has to be passed.

8.7.5 Applicability

Depending on the Configuration
Items checked with auditing and
accounting, this pattern can be
applied during several phases of
the product lifecycle.

 During the scoping phase,
the focus will be on
documentation

 During the development
phase, the focus will be on
the functionality (code) and
consistency

 During the maintenance
phase, the focus will be on
the defects (code).

8.7.6 Structure

Globally, the pattern can be
drawn as shown.
Explanation of the steps:

(1) Defects &

Change requests

(2) Put Defects &

CR‟s in tracking

and planning

database

(3) Resolve/

implement CRs

and defects

(4) Check if

everything is

delivered

according to plan

(5) Report

(6) Corrective

actions based on

report

 108

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 108 of 123

(1) Defects and change requests are the reasons to change the code/documents
(2) The defects and Change requests are put into a planning and tracking database.

Via this database the work is assigned to developers for execution.
(3) Developers resolve the defects and implement the change requests. This will

result in deliverables and a tracking record containing the applied change
request/defects

(4) This is the actual status accounting or auditing: comparing the planned
defects/change requests against the delivered ones.

(5) A report is written containing the findings and/or deviations from the planning.
(6) Based on the agreements made in the CMP (Configuration Management Plan)

corrective actions can be started to resolve the deviations or findings

8.7.7 Participants

Following roles are involved:

 Configuration manager
The Configuration manager is the one who actually performs the audit/accounting

 The role responsible for the deliverables (can be project manager, but also team
leader or integration manager)
This role is responsible for having the deviations resolved / findings followed up

 Quality officer
The Quality officer has to guide the process and does track the follow up of the
deviations / findings

8.7.8 Collaborations

The collaboration can be split over 3 phases:
(1) Preparation: all people involved have to get the same “view” on the status of

change requests, defects and planning. During this phase, also agreements are
made on what is checked during the audits/accounting.
These agreements are usually written down in the CMP.

(2) Investigation of deviations/findings: in case deviations and/or findings are found,
these have to be investigated. It might be necessary that the involved people help
each other in this

(3) Follow up: the people involved have to agree upon follow up of the deviations and
findings.

(4)

8.7.9 Consequences

As mentioned before, the objective of this pattern is that corrective actions already can
be initiated during the project, instead of at the end of the project when official
deliveries have to be done.
Executing status accounting on regular bases (for example monthly) gives
management an indicator of how the project (from CM perspective) is performing.
When corrective actions are initiated (and executed!) in time, this pattern will
contribute to a smoother passing of the milestones during a project.

8.7.10 Implementation

The biggest pitfall is that status accounting / baseline auditing leads to “management
satisfaction”. This phenomenon is seen when the results of accounting/auditing are
treated as a goal on its own, instead of supporting the project.

Some examples of “management satisfaction”:

 109

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 109 of 123

 Team leaders adjusting the planning of change requests/defects just before the
actual delivery, so they can deliver exactly what is planned. If they don‟t adjust the
planning last minute, they will have a remark in the accounting report (so
management attention). To prevent that, they adjust the planning.

 Manipulating data #1. People might keep an own “local” administration of defects
found instead of putting them all in the defect database. Only one (general) defect
is administrated officially, so to management it looks like they have very good
software, but appearances are deceptive.

 Manipulating data #2. Sometimes a set of defects is made duplicate of a general
defect like “improve this code”. By creating these duplicates, the amount of open
defects can be reduced very easy.

8.7.11 Samples Known Uses

Below 4 examples of how configuration status accounting / baseline auditing is used in
existing projects.

1. Analyzing build results
Let‟s start with an example an analysis that is performed by most of the Software
Configuration Managers (SCM) and/or build managers: the analysis of build results.

Analyzing and logging of build-errors on subsystem- or module-level might give insight
into the quality of deliveries.
In case a certain module causes build-errors regularly, this might indicate gaps in the
development process for this module.
Possible causes can be:

 Bad or no code review

 No functional test by the developer before delivery

 No build by the developer before delivery

 Developer doesn‟t know which versions of interfaces to use
By monitoring the build results during the project, corrective actions can be initiated
before it‟s too late.

A more in-depth investigation of the build-logging usually reveals additional
information that might impact the project. Especially information with respect to usage
of old (deprecated) interfaces which will be removed in a next release, or information
about specific methods or functions that are not supported anymore in a next release
of the compiler have to be monitored. This helps in preventing unexpected problems
when an update takes place on the interfaces or compiler.

Typically, in the SCMP agreements on this are written down, for example that no old
interfaces shall be used at a certain milestone. During status accounting it is checked
if it‟s still feasible to meet this agreement and/or what‟s needed to meet it.
When the baseline audit shows that the agreements are not met, an impact analyses
is necessary to find out if it will be a blocking issue for the milestone pass.

2. Maturity grid

 110

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 110 of 123

Maturity grid: a method where the maturity of
the project is measured based on the
amount defects raised, their severity and
their actual status.

Representation is done by means of a grid.
(S1-S2-S3 represents the severity)

 S1 S2 S3

New

In progress

Solved

Per project phase it is defined which cells of
the grid must have value 0 (representing the
maturity).

Example: at the start of a test phase, all S1
defects have to be solved, and all S2 defects
have to be in progress. So the grid has to
look like below to start:

 S1 S2 S3

New 0 0 ≥0

In progress 0 ≥0 ≥0

Solved ≥0 ≥0 ≥0

In case these criterion are not met, the
amount of problems to be solved can be
considered as an indication for the maturity

of the product.

Another measurement that suits status
accounting and baseline auditing very well is the
so called maturity grid (see frame).
In the SCMP the maturity levels per milestone are
defined. This makes checking of the maturity
level a typical baseline auditing activity.

But, why wait until the last days before the
milestone to check this? By checking the maturity
on regular base during the project (as part of
status accounting), a prediction can be done
whether the required maturity level can be met in
time or not. When needed, also corrective actions
can be initiated.

If, for example, still 100 defects have to be solved
to reach the required maturity level, but the
milestone is within 2 weeks, the project has to
see if solving 50 defects per week is realistic or
not.

At such a moment, recording historical data pays
off too. Based on this historical data, it‟s easy to
determine whether solving 50 defects per week is
realistic or not.

Sometimes it happens that people within a project maintain their own overviews of
defects, or even personal maturity grids. The main objection of these personalized
overviews is that everybody has a different view on the current status. Even when
using the same queries on the defect database, the results might differ when one
overview was generated in the morning, and the other one in the afternoon.
This might lead to unnecessary discussions and/or misunderstanding.

This can be avoided by having overviews like the maturity grid generated centrally
(e.g. by SCM) so all involved people talk about the same figures.

3. What did we actually deliver?
New deliveries in a software development project often leads to the question “what
exactly does this delivery contain?”

Collecting delivery information used to happen by walking around and asking the
developers what they actually delivered. Nowadays, this information often can be
generated by coupling a SCM system and a CR/PR management tool.
But, why still discussions on what has been delivered? Most of the times, this is
caused by different perceptions about the term “delivered”.
A SCM engineer looks into his SCM system, and maps the changed configuration
items to the related change requests and defects. This mapping results in an overview
of what is delivered, and this is also what will be identified by means of a baseline.
From SCM perspective, this overview is “the truth”

Others in the project, for example the team leader or integration manager, often look
to the status of the change requests or defects in the CR/PR management tool and
draw conclusions based on this information.

 111

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 111 of 123

In a perfect world, these 2 overviews are identical. However, in the real world they
often differ.

An example of how this can happen is a developer, who quickly has to fix a problem in
his local environment just before he goes on holiday. The solution is delivered as a
patch directly to the testers, or even worse, directly to the customer (without involving
configuration management). The developer finishes the administrative part of his work
(e.g. setting the defect status to solved) so from the perspective of the team leader
everything seems o.k. now for this problem, since the status is solved.
But, as the developer is eager to go on holiday, he forgets to deliver the solution to
SCM. As a result of this, the problem re-occurs after the next official delivery, so the
customer will not be happy.

By comparing frequently the administration with the SCM environment (status
accounting) problems in a later stage of the project can be prevented. At the milestone
pass (the audit) there should be no more (unexplainable) differences between the two
systems.

4. Consistency
Consistency is a typical keyword in the definitions within the scope of SCM. But, what
is actually meant with this term, and how can it be checked?

One of the meanings of consistency is “having no inner contradictions”.

Assuming a software project has at least 2 types of configuration items (being
documentation and code), three flavors of consistency can be defined:

Document – document

With a consistent set of documents is meant that the complete document
structure is a consistent entity. In other words: all mutual references, including
versions, are correct. After all you want to be sure that for example design
specifications are based on the correct version of the system specifications.
A solid and reliable document management system can help you in keeping
the document structure consistent, but checking is still very often a manual
task.
This checking can be automated too, bit this really depends on using strict
templates and conventions for documentation

Document – code
In an ideal project, stable requirements, together with a requirement
management process and code reviews that the final delivery contains exactly
what has been requested.
But….what in case one of these processes contains gaps?
This partly can be resolved by adjusting the SCM procedures and tools, so the
gaps are closed. However, by solving it this way, SCM becomes owner of
problems which actually are no SCM problems but organizational problems.

If, for example, there is no or inadequate requirement management tooling,
SCM can support by creating procedures in the SCM area. On one hand the
problem is (partly) solved this way, on the other hand, the root cause
(inadequate tooling) is not tackled.

The role of SCM should be restricted to a monitoring one in this. Very detailed
checks are very time-consuming, and only should be done on at random.

 112

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 112 of 123

Usually, these random checks can be used as an indicator whether the
relations between code and documentation is ok.

There are also some simple checks to think of, which are easy to implement.
Assume a change is applied on a requirements document; then a logical
continuation of this change would be a change on the underlying design spec
and next in sequence the source code.
If this logical sequence cannot be detected, this might indicate a gap in the
processes.

Code-Code
During software development projects it‟s also important to pay attention to the
consistency of the delivered code.

Focus should be that every part of the development process (developing,
building, testing) has been executed in the same environment. Consider in this
context aspects like compiler versions, libraries, standards but also interfaces
between subsets of the product.
This kind of checking is especially applicable if the end product is assembled
based on subsets of several (third) parties.
But also in a local environment it‟s important that all involved are using the
same versions of software and interfaces.

An example of what might go wrong in case the development- and build-
environment are inconsistent:

The scenario is software development using JAVA. By default, JAVA version X
is installed on all build- and development engines. At one day, one of the
developers found a nice website, but to be able to view this site correctly, he
needed a newer version of JAVA. So he downloaded this version and installed
it locally on his development-PC. After he finished viewing the website, he
continued developing code, but now (unintentionally) based on this new JAVA
version. As this version had some nice new features, he made use of it in his
code.
After the local tests on his own machine passed successful, he delivered the
code to SCM. But, SCM couldn‟t get the code compiled. It took a few days to
figure out that this was caused by the mismatch in JAVA version.

8.7.12 Related Patterns

All other configuration management related patterns

8.8 Software Development Stream pattern

8.8.1 Pattern Name and Classification

Software Development Stream pattern.

8.8.2 Intent

This pattern describes a branching approach for software development streams. The
context wherein it is applied is:

 Multiple development projects running in parallel

 Evolutionary development with backwards compatibility requirements

 113

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 113 of 123

 Multi-site development

 Development of an embedded system, which has to deal with both a hardware
and a software development lifecycle.

8.8.3 Motivation

A generic overview of branching strategies is described by Brad Appleton – Streamed
Lines: Branching Patterns for Parallel Software Development:
http://www.cmcrossroads.com/bradapp/acme/branching/
This generic overview sums up a lot of patterns for branching that can be used. The
process described in this process pattern is used in real life and focuses on the
context as described in the section “Intent”.

8.8.4 Applicability

This process can be applied with traditional processes, but with more agile
approaches as well.

8.8.5 Structure

This process pattern is applied for software development of the software embedded in
a medical device. Development activities in general involve hardware and software
development. The software is backwards compatible to be able to supply software
upgrades and repairs to existing customers.
A number of basic starting points of evolutionary development:

The basic concept is a Cascade model. Each next software stream branches from the
previous stream.
Some reasons to branch are:

http://www.cmcrossroads.com/bradapp/acme/branching/

 114

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 114 of 123

 To prevent any risks resulting from the software development on stream B to
influence stream A.

 Inconsistency between the (lead time of the) development lifecycle of hardware
and software.

 Business reasons imposed by the costs and availability of hardware under
development.

The moment to branch is a trade-off: branching typically results in overhead
(coordination, merging); for this reason the moment to branch is delayed as long as
possible.

The project‟s development lifecycle is mapped to the software stream. To prevent
unnecessary branching, more than one project can work on the same software
stream. Coordination over development projects is required then; see the section on
participants and collaboration.

Merging typically takes place from top to bottom in this graphical representation:

 115

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 115 of 123

After finalizing the first major release from a software stream, the software stream
goes into “maintenance mode”. From that moment onwards the stream is used to
produce service packs (SP‟s) and levels. Levels can either bring repairs or
functionality.

Maintenance mode is depicted in red in the next diagram:

Again, default merge approach for SP‟s and levels is top-down:

 116

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 116 of 123

In specific cases a “merge back” is performed to a previous release. This is always
explicitly controlled via an entry in the defect database.

 117

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 117 of 123

8.8.6 Participants & Collaborations

In this process there are many stakeholders: Product Program Management, Project
Management, Software development at each of the development sites. Due to their
nature to focus on specific project definition, projects have a tendency to sub optimize
for their own project c.q. deliverables. There is a process in place to control the overall
consistency over all software streams and software releases. In this process it must be
possible to escalate above the interest of individual projects. The following diagram
represents the process:

This process is executed in a monthly cycle. The SW stream scenario meeting is a
mechanism to escalate over the scope over the multiple parallel projects.
The deliverable of the desert meeting is an updated diagram showing:

 All relevant software streams

 All software release level and service packs

 All merges.
This overall picture is the basis for and overall software configuration management
plan, which fills in the actual details (exact baselines, labels, stream names, release
names, dates, etc).

8.8.7 Related Patterns

The Incremental Configuration Management Process Pattern is related. That process
pattern focuses on components and release management. It can be considered as
complementary to this process.

8.8.8 Known uses

 Philips Medical Systems

 118

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 118 of 123

8.9 Product baseline overview pattern

8.9.1 Process pattern name:

Product Baselines Overview

Product baselines describe a product under development in terms of its underlying
module hierarchy. The lowest module level consists of work products created by a
single development discipline (such as software or electronics). Product baselines
may refer to the discipline modules directly or to a collection of such modules
aggregated in an intermediate baseline. To keep the discussion below simple we will
consider here product baselines that consist of a single hierarchical layer of discipline
modules.

The Product Baseline Overview is a history over time of the created product baselines
during the development of the product.

8.9.2 Intent

The pattern describes practical ways of working for managing product baselines.

The outcome of this process pattern is:

 Well defined and recorded product baselines.

 It provides traceability of product features over the development history.

 It supports the change control process for the product.

 It helps manage the quality level of product baselines during the project for the
different stakeholders (e.g. developers, testers, external parties).

8.9.3 Also known as

No other name available yet.

8.9.4 Motivation

Products in general consist of a number of modules created by different disciplines:
PCBs, mechanics, programmable logic, software. Each of the disciplines has its own
development cycle with its specific tools. Often these tools support version
management and poses the ability to create baselines for configuration management
of the discipline work products. Different tooling is employed by different disciplines
due to the specific demands of the discipline.

Configuration management at the product level, as defined by CMM-i, requires the
creation and administration of product baselines. These product baselines are defined
normally in terms of the discipline baselines, in other words: a product baseline is a
fixed collection of specific discipline baselines. For administrating these product
baselines there is a need for a simple and easy to maintain way of recording the
baselines. This tool provides a solution to the following difficulties in the existing
development flows:

 119

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 119 of 123

 Product baselines are not supported by existing discipline configuration or version
management tools: these tools generally do not support baseline hierarchies, and
in most cases don‟t record baseline quality levels (with associated evidence).

 Some discipline development flows lack (full) configuration management.

Per product baseline the following items need to be recorded in order to perform
useful and consistent configuration management:

 The product baseline identification.

 The product baseline contents, consisting of the baseline identifications of the
composing discipline modules and the product defining documentation.

 The quality level of the baseline, including (a pointer to) the evidence on which the
level is based.

 If desired an overview of the most important changes with respect to a previous
baseline, including solved (major) defects.

Additionally to the product baselines the same format can be used to perform
discipline baseline administration for those disciplines that lack proper version control
tooling in their development flow.

8.9.5 Applicability

The pattern is applicable throughout the complete development lifecycle of a product.

8.9.6 Structure

The process steps of this pattern:

 The Configuration Items (CI‟s) that the project will deliver are clearly identified.
Properties for the definition of a CI:

 Controlled interfaces with respect to other configuration items.

 Own documentation structure.

 Independent development, verification & validation.

 Independent life cycle.

 Form, Fit & Function replacement possible.

 May be used by more then one users/clients.

 The content of each Configuration Item is defined.

 The way of identifying product baselines and discipline baselines is established,
e.g. use of a company number system or specially constructed labels.

 A form is set up that contains fields for entering the administration items mentioned
under section 4.

 Each product baseline is described by a filled instantiation of the form. The
collection of filled forms constitutes the Product Baseline Overview.

 Similar forms are or may be maintained for disciplines lacking proper version
control and baseline labeling.

The following figure shows a template that can be used to set up the form:

 120

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 120 of 123

8.9.7 Participants & collaborations

The product integration manager is responsible for the content of the product baseline
overview. The actual administrative work can be performed by the project
configuration manager. Discipline integrators are responsible for the delivery of
discipline baseline information.

8.9.8 Consequences

Performing product baseline administration following the presented process pattern
enables a project to create an overview of product evolution, changes and defects. It
serves as the basis for product release bulletins and changes notes. It enables a
project to step back to earlier product versions in case of severe mishap in any
development phase or increment. It provides a precise content definition of delivered
product versions, needed in case one or more customers experience problems with

 121

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 121 of 123

(intermediate versions of) the product. These benefits are achieved by a consistent,
sufficiently complete and timely administration of the product baselines with their
properties as described by this process pattern.

8.9.9 Implementation

A simple implementation example is based on a spreadsheet program:

 A sheet is created for each product/discipline baseline overview to be
administrated.

 Each sheet has in its first column(s) a description and labeling of the applicable
entry fields.

 The following columns each define a product baseline by means of the filled in
data.

 Restrict any change information (if present) to the most important
changes/problems to keep the overview compact and efficient.

 See the sample below.

8.9.10 Sample

 122

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 122 of 123

8.9.11 Known uses

 Philips Medical Systems

8.9.12 Related Patterns

 Incremental configuration management.

 123

SERIOUS

ITEA 04032

WP2 Deliverable 2.2

Page 123 of 123

9 References

[APACHE] About the Apache incubator, http://incubator.apache.org/ , Julio 2006.
[ECLIPSE] Validation phase, http://www.eclipse.org/projects/dev_process/validation-

phase.php , Julio 2006.

[BOEHM] ISBN 0-13-822122-7 Software Engineering Economics, B.W.
Boehm,1981

[CAPERS] ISBN 0-07-913094-1 Estimating Software Costs, T. Capers Jones,1998
[HUMPHREY] ISBN 0-201-54610-8 A discipline for Software Engineering, Watts S.

Humphrey, 1995
[LEDERER] Communications ofthe ACM, Vol. 35,Nr. 2, February 1992,pp. 51-59

Nine Management Guidelines for Better Cost Estimating, Albert L.
Lederer and Jayesh Prasad,

[RAD] ISBN 1-55615-900-5 Rapid Development, Taming Wild Software
Schedules, Steve McConnell, Microsoft Press, 1996

[SWEST] Software Estimation Course, Centre for Technical

http://incubator.apache.org/
http://www.eclipse.org/projects/dev_process/validation-phase.php
http://www.eclipse.org/projects/dev_process/validation-phase.php

