

SERIOUS

DELIVERABLE
D3.3 – Overview and evaluation of design and
refactoring methods
•••

Project number: ITEA 04032

Document version no.: WP3 Deliverable 3.3 Final version

Edited by: University of Antwerp “January 14, 2006”

ITEA Roadmap domains:

Major: Services & software creation

ITEA Roadmap categories:

Major: Software engineering

Minor: System engineering

 Public 14/01/2006

SERIOUS

ITEA 04032

WP3 Deliverable 3.3

Page 2 of 11

HISTORY

Document
version #

Date Remarks

V0.1 14-10-2006 Initial integration of questionnaire results, University of Antwerp

V0.2 19-12-2006 Addition of FMEA method (section 2.3) by Philips PMS

V1.0 14-01-2006 Final version

 Public 14/01/2006

SERIOUS

ITEA 04032

WP3 Deliverable 3.3

Page 3 of 11

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY ... 4

2 CATALOGUE OF DESIGN METHODS ... 5

2.1 Diversity management by encapsulation ... 5
2.1.1 Context .. 5
2.1.2 Actions ... 5
2.1.3 Quality trade-offs.. 5
2.1.4 Lessons learned .. 5

2.2 Unit testing ... 5
2.2.1 Context .. 6
2.2.2 Actions ... 6
2.2.3 Quality trade-offs.. 6
2.2.4 Lessons learned .. 6

2.3 Software design review using Failure Mode and Effect Analysis 7
2.3.1 Context .. 8
2.3.2 Actions ... 8
2.3.3 Quality trade-offs.. 8
2.3.4 Lessons learned .. 8

3 CATALOGUE OF REFACTORING METHODS .. 9

3.1 Type conversion in legacy code ... 9
3.1.1 Actions ... 9
3.1.2 Quality trade-offs.. 9
3.1.3 Lessons learned .. 9

4 DISCUSSION .. 10

5 REFERENCES .. 11

 Public 14/01/2006

SERIOUS

ITEA 04032

WP3 Deliverable 3.3

Page 4 of 11

1 Executive summary

This document presents a description of the state-of-practice in the application of best
practices in software design and software refactoring. The objective of this endeavour
is the documentation of design and refactoring methods that are used within the
consortium, and which improve quality. Thus, a means for collecting best practices
was required.

To gather a set of best practices applied within the consortium, an online
questionnaire was composed. This questionnaire presented examples of best
practices in quality-oriented design and refactoring, e.g.:
 Two examples of a design process:

o Rapid prototyping
o Design by contract

 An example of an anti-pattern:
o The round-tripping performance anti-pattern

The questionnaire enabled the description of the following types of best practices:
 design patterns (good examples), or conversely, anti-patterns (counter

examples). The focus can be both on a before-and-after comparison, and on the
steps required to get there.

 process guidelines, e.g., ways of working (such as early prototyping, test-driven
development, design-by-contract) and key activities (such as use of Class-
Collaboration-Cards)

The questionnaire was send out to the responsibles of the different partners
contributing to Workpackage 3 on October 16th, 2006, and was available for collecting
best practices until November, 8th, 2006.

In total, 4 best practices were gathered, which are discussed in the following sections.
Section 2 discusses three design best practices. The single refactoring best practice is
discussed in Section 3. Finally, a discussion on the collected best practices
representing the overview and evaluation of existing design and refactoring methods
is provided in Section 4.

 Public 14/01/2006

SERIOUS

ITEA 04032

WP3 Deliverable 3.3

Page 5 of 11

2 Catalogue of design methods

This chapter describes the quality-oriented design methods gathered across the
Workpackage 3 partners.

2.1 Diversity management by encapsulation

“Diversity management by encapsulation” represents a design choice, which
introduces proxy classes to encapsulate diversity of interface semantics.

The problem arises when a server interfaces with multiple clients that need changes.
Typically, the interface of these clients must remain stable, due to interactions with
other servers. Moreover, client-specific details cannot be incorporated in the server, as
this would disable transparent client services in the server.

This design method proposes to solve the problem by introducing proxy classes,
which provide specific interfaces to the specific client application. Such proxy classes
translate the generic client interface to the specific client interface.

The motivation for this solution is that the introduction of new clients will not require
changes to the server, and can be merely accommodated through the introduction of
new proxies.

2.1.1 Context

This is an architectural decision that must be made in the inception/elaboration phase,
i.e., before implementation starts.

2.1.2 Actions

Define a generic client interface, which is applicable for all clients. For each client,
implement a proxy class, which translates the generic client interface to the specific
client interface.

2.1.3 Quality trade-offs

Since the proxy class encapsulates the interface translation, maintainability (in
particular extendibility) is positively affected. Performance can be slightly negatively
affected in case the interface translation is computation intensive, or introduces a
communication overhead.

2.1.4 Lessons learned

This practice was successfully applied in PMS in the Phoenix project, and supported
the integration of a total of seven different clinical applications; five of them were third
party applications that could not be changed.

2.2 Unit testing

“Unit testing” represents a design choice for test code, which refines the granularity of
tests to a single unit, typically a class in the Object-Oriented paradigm.

The problem arises when it is hard to perform root-cause-analysis of faults. Typically,
in these cases, the tests verify the accuracy of a whole scenario being executed,
typically in the form of an integration test.

 Public 14/01/2006

SERIOUS

ITEA 04032

WP3 Deliverable 3.3

Page 6 of 11

This test design method proposes to solve the problem by verifying the execution at a
very fine-grained granularity, in such a manner that merely a single class can be
responsible for the fault. Mostly, the interaction between classes should be addressed
by introducing stubs, which mimic the behaviour of a class with which the class under
test is interacting.

The motivation for this solution is that early feedback can be provided when changing
units (e.g., classes) by running unit tests. Thus, an iterative style of running tests is
enabled, e.g., first unit testing, then integration testing and subsequently system
testing. Unit tests are thus highly useful for phases in which changes are applied
frequently, e.g., development of new code, implementation of change requests, and
refactoring.

2.2.1 Context

This is a design decision that has considerable impact on the design of classes. While
it is possible to modify the structure of your system to enable unit tests, the initial
design of your system has a large impact on the costs to introduce unit tests.

2.2.2 Actions

Unit testing is conducted in an automated environment, mostly through the use of a
third party supplied component or framework, for testing a unit in isolation.

2.2.3 Quality trade-offs

Attempting to test a unit in isolation forces one to evaluate the unit’s dependencies. As
unit tests are infeasible for units with many dependencies, unit testing stimulates one
to write isolated units, which are decoupled and highly cohesive. Thus, unit testing
positively affects maintainability.

Moreover, by concentrating test effort on a fine-grained level, the root cause of faults
can be more easily verified, thereby improving reliability.

However, the amount of code that has to be written for the unit tests and their stubs is
considerable. This test code has to co-evolve with the production code, and therefore
introduces an additional maintenance cost.

2.2.4 Lessons learned

Unit testing is particularly supportive for refactoring. In essence, refactoring is a
controlled manner to apply a series of source modifications. During such changes, one
has to continuously ensure that the behaviour of the system has not changed. In case
the behaviour has changed, unit tests can direct the developer/tester to the particular
unit that does not longer behave according to the original specifications.

Unit testing can stimulate a different approach to software development, i.e., Test-
Driven Development (TDD). In TDD, tests are written before the actual code, thereby
clarifying the requirements in a verifiable manner. Consequently, the unit’s
specification (and usage documentation) is provided in the unit test itself.

The fact that unit testing enforces one to write encapsulated and isolated units can
also be a drawback, as this encapsulation introduces a series of abstractions. For
relatively small applications, this lead to over-engineering.

 Public 14/01/2006

SERIOUS

ITEA 04032

WP3 Deliverable 3.3

Page 7 of 11

2.3 Software design review using Failure Mode and Effect
Analysis

Failure Mode and Effect Analysis (or FMEA) is a well-known design review method
used to identify potential failure modes, their effects and root causes. The method
offers the possibility to rank the importance of the various failure modes using the so-
called Risk Priority Number, which is a multiplication of the severity of the effect, the
probability of occurrence of the root causes and the delectability in the current design.
This method can also be applied to software systems. The basis for this approach was
described by Maxon & Olszewski [1].

Software systems fail mainly for two reasons: logic errors in the code, and exception
failures. Exception failures can account for up to 2/3 of the system crashes. Traditional
approaches to reducing exception failures, such as code reviews, walkthroughs and
formal testing, while very useful, are limited in their ability to address a core problem:
the programmer’s inadequate coverage of exceptional conditions. The problem of
coverage is rooted in cognitive factors that impede the mental generation (or
recollection) of exception cases that would pertain in a particular situation, resulting in
insufficient software robustness.

FMEA offers a structured way to consider potential exceptions (or failure modes). To
do this:

 An overview is made of the various software modules that make up the software

system under consideration
 Process flows are made for the various use cases (or user scenario’s) in which

the interaction between the various modules is depicted and described (e.g. the
start-up of the system)

 For each scenario/flow possible exceptions are generated using the CHILDREN
mnemonic.

 These exceptions are considered as failure modes in the FMEA framework. For
each exception the possible effects and root causes are identified. Current
controls are investigated and design improvements are proposed.

The CHILDREN mnemonic is shown in a typical fishbone graph displayed in Figure 1.

 Public 14/01/2006

SERIOUS

ITEA 04032

WP3 Deliverable 3.3

Page 8 of 11

 Figure 1: Fishbone diagram showing exception types and exemplars.
 The first letters of the rib labels spell the mnemonic CHILDREN.

2.3.1 Context

The FMEA method can be applied on all levels of the design, from system level down
to the smallest software component/module. It is important to well define the scope
that is considered for the FMEA. If required, separate FMEA’s can be planned for
lower levels in the system.

2.3.2 Actions

The various steps in the FMEA were described above. Preparation for the FMEA
workshop is very important. It is also important to invite various people in the
workshop. Not only designers should participate but also (if possible) users, service
engineers, suppliers, etc.

2.3.3 Quality trade-offs

In principle the FMEA method can be used to evaluate various quality attributes of the
software system, not only robustness. Of course the FMEA method in it self does not
make the trade offs between the various quality attributes. Other methods (like the
Pugh selection method) must be used for that.

2.3.4 Lessons learned

This FMEA method for optimising the robustness of software systems was
successfully applied in Philips Medical Systems. Various software systems were
improved and designers found the method a useful addition to other review methods.

 Public 14/01/2006

SERIOUS

ITEA 04032

WP3 Deliverable 3.3

Page 9 of 11

3 Catalogue of refactoring methods

This section reports on the single refactoring method that was reported using the
questionnaire.

3.1 Type conversion in legacy code

“Type conversion in legacy code” is a refactoring practice, and can be applied in the
phases starting from implementation. Two examples of types between which one can
converse are (i) chars; and (ii) unicode.

The problem arises when the information capacity of one type can no longer be met at
in at least one part of the software system. Due to dependencies among modules,
changing these types will not only have a local effect, but will also ripple to modules
that interact with the data of that type.

This refactoring practice proposes to solve the problem by iteratively converting the
modules. Ensure that the system remains in a working state throughout the
conversion, as well as open to other changes, by carefully examining change ripples.

The motivation for this iterative solution is to control risks. A big bang approach in
which all type usage would be changed would block any other changes in the
meantime, and would introduce the danger that the system cannot be brought to a
working state.

3.1.1 Actions

Declare new data types that encapsulate the new type, e.g., unicode, while keeping
the old (non-unicode) data types. Then, iteratively (e.g., on a module basis) convert
modules to make use of the new (unicode) data types. After each module change, test
the module in isolation, and rerun the integration tests.

New development should be required to use the new (unicode) data types, and be
unicode-compliant itself.

3.1.2 Quality trade-offs

Since the new data types encapsulate the choice between a char and a unicode,
future changes to the type will not spread through the system. Accordingly,
maintainability is positively affected.

3.1.3 Lessons learned

This practice relies extensively on testing practices. Well-defined unit tests are
necessary to detect and pinpoint conversion problems as soon as possible.

 Public 14/01/2006

SERIOUS

ITEA 04032

WP3 Deliverable 3.3

Page 10 of 11

4 Discussion

The collection of best practices using an online questionnaire provided an instrument
to verify the extent to which design and refactoring methods that improve quality are
incorporated in the different industrial partners contributing in the project. This
instrument was set up to derive a representative reflection, and consequently, we can
assume that the overview presented in this document reflects the actual state-of-
practice with regard to quality-oriented design and refactoring in the consortium.

The use of the questionnaire resulted in the documentation of three best practices: 3
design methods and a single refactoring method. Interestingly, the three discussed
best practices stimulate encapsulation to improve maintainability. One design method
focuses on reliability (or robustness), but could as well be applied to other quality
characteristics.

Thus, these best practices acknowledge that software design can indeed be steered
towards quality-optimizations (in particular maintainability and reliability), and provide
illustrative examples of how such optimizations can be achieved.

However, the fact that merely 4 best practices were reported seems to indicate that
the concept of quality-oriented design methods or quality-oriented refactoring methods
is not extensively put in practice yet.

Consequently, the main conclusion of this effort is that there is considerable room for
improvement in the area of quality-oriented design and refactoring.

 Public 14/01/2006

SERIOUS

ITEA 04032

WP3 Deliverable 3.3

Page 11 of 11

5 References

(1) Roy A. Maxon and Robert T. Olszewski. Improving Software Robustness with
Dependability Cases. 28th International Symposium on Fault-Tolerant Computing:
Munich, Germany, 23-25 June 1998

