FAILURE MODES & EFFECTS ANALYSIS AS A QUALITY IMPROVEMENT PROCESS Nicholas Noyes MS, BSEE Director Clinical Engineering Univ. Of Connecticut Health Center 263 Farmington Ave. Farmington, Connecticut 06030-1015 USA 1 2 # FMEA Project - Background The Health Centers' Respiratory Compressed Air (RCA) system which consists of three parallel compressors completely shut down when the main 100A fuse feeding the RCA system blew. Investigations revealed that the BeaconMedaes Triflex RCA system, compressor #1 had short-circuited and failed to trip the dedicated circuit breaker for compressor #1 and had instead blown the 100A supply fuse to the entire RCA Beacon Triflex system, shutting down both back up compressors. An analysis of the incident showed that the cause of failure was due to a mismatch between circuit breaker and fuse technologies with these devices having different tolerances to short circuit current. 3 ### **FMEA Taskforce** The taskforce included the following stakeholders: Director of Clinical Engineering - Assoc. VP Facilities Management and Operations - Director of Mechanical Engineering - Electrical Engineering - Plumbing Department Supervisor - BeaconMedaes Sales and Service - Quantum Engineering - Director of Respiratory Therapy - Director of Patient Safety 4 # **FMEA Project Overview** A Failure Modes and Effects Analysis (FMEA) was undertaken to evaluate all steps and potential failure points for the entire RCA delivery process including electrical feeds, performance of the Beacon Triflex system, alarm systems and emergency back up response procedures. Each of the failure points was scored for Severity, Frequency and Detectability using the Sheff & Marder FMEA Process, and the ten highest priority risk of failures were addressed in an Action Plan. Several action steps were completed immediately, and the remaining steps were completed during subsequent weeks, including electrical feed changes by UCHC, an upgrade to the RCA by BeaconMedaes, changes to RCA monitoring protocols, and review of available back up systems and RCA loss response protocols. 5 # Medical Air Compressor System Schematic (Flow Diagram) Alt latet Filter Regulator Proce 100A Control Signala/Alarme Control Signala/Alarme Accounted Acc ## **FMEA Process Guide** "The Step-by-Step Guide to Failure Modes and Effects Analysis" by Sheff & Marder was applied to the schematic (flow chart) of the power supply to the air compressors and for the Respiratory Compressed Air delivery to the hospital which resulted in a completed FMEA Failure Mode Prioritization Chart. This chart included a score from 1-10 for each step on the schematic for the following categories: Severity, Frequency and Detectability. The scores were multiplied, with the highest resulting Risk Prioritization Numbers (RPN's) serving to focus attention on the highest risk of failure steps on the flow chart. 7 | , | SEVERITY SCORE Sheff & Marder | FREQUENCY SCORE Sheff & Marder | |------------|---|--| | 9 1 | No significant impact on clinical outcome | 1 May occur once in 100 years | | 3 (| Mild impact | 3 May occur once every 5 years | | 5 | Moderate impact | 5 May occur once each year | | 7 | Significant impact | 7 May occur once a month | | 10 | Entire process will fail | 10 May occur one or more times per day | | | | 8 | - Detectability Score Sheff & Marder Very easy to detect; highly visible; multiple steps - 3 Fairly easy to detect; several steps - 5 Moderately detectable; fair visibility; 2 or more steps in process - Moderately difficult to detect; low visibility; only one step prior to failure - 10 Extremely difficult to detect; invisible | Process Step | Failure Modes | Severity
Score | Frequency Score | Discoverability
Score | RPN | Priority
Rating | |---------------------------------------|---|-------------------|-----------------|--------------------------|------------|--------------------| | UCHC power
source to
compressor | Normal power failure | 3 | 3 | 1 | 9 | | | MID | Emergency power failure | 10 🎤 | 2 | 1 | 20 | | | | Transfer switch failure | 10 | 5 | 1 | 50 | | | W | 700 | A | | (🗘 (|) . | | | UCHC wiring | Wire disconnects or opens | 10 | 2 | 6 | 120 | 7 | | | | | | No. | OF W | . J | | | | | | | | À | | UCHC EPPS/1
Fuse | Blows prematurely | 10 | 3 | 7 | 210 | 2 | | | Improper fuse for load
conditions; replacement
fuses not readily
available | 10 | 3 | 8 | 240 | 1 | | | | • | | | • | : | | | | | | | | | MODE PRIORITIZATION FAILURE | Beacon Circuit
Breaker #1,2,3 | Trips early | 3 | 3 | 1 | 9 | | |----------------------------------|---------------------------|----|---|---|-----|--------| | 8 | Fails to trip | 10 | 2 | 8 | 160 | 5 | | Beacon
Starter/Controller | Compressor fails to start | 3 | 2 | 7 | 42 | | | | Control logic failure | 9 | 2 | 7 | 126 | 6 | | Beacon
Compressor
#1,2,3 | Fails to start | 3 | 5 | 7 | 105 | 10 | | 'Va | Low pressure | 3 | 3 | 7 | 63 | | | | High pressure | 3 | 3 | 7 | 63 | | | Air Intake | Blocked | 10 | 2 | 3 | 60 | A Part | | | Contaminated | 8 | 3 | 5 | 120 | 8 | | Air Reservoir | Leaks, bursts | 8 | 2 | 3 | 48 | | | | Air flow blocked | 10 | 2 | 2 | 40 | ¥ | | Med Gas Pressure
Alarm | Fail to detect hi/lo pressure | 5 | 3 | 5 | 75 | | |---|--|----|---|---|-----|-----| | | Inaccurate | 5 | 3 | 8 | 120 | 9 | | Back Up RCA
System | Power Supply Fails | 10 | 2 | 2 | 40 | | | | Fails to start when needed | 10 | 2 | 2 | 40 | | | Response Protocol Back up cylinder/regs/hoses | Cylinders not
available/empty/regulators
missing/hoses
missing/inadequate
emergency supply | 10 | 3 | 7 | 210 | 3 | | Response Protocol-
staff knowledge | Emergency responders are
not knowledgeable of
backup systems and
response protocols –ECC,
facilities,
plumbing,respiratory
therapy, clinical
engineering. | 10 | 3 | 7 | 210 | 4 | | | | | | | | * 1 | # **Action Plans – Top 10 Scores** - Install holder for replacement 100A fuses for emergency situations - Install three separate fused feeds to Beacon Air Compressors - Beacon to annunciate compressor power failure at Environmental Control Center (ECC) - Beacon to annunciate control logic failure at ECC - Beacon to annunciate lag alarm in ECC to ensure quick response - On rounds, Plumbers to verify that all three compressors are cycling - Verify pressure monitoring systems for early detection of problems - Correct medical air intake piping protect from pigeons; remove extraneous filter - Verify secondary Quincy compressor system will remain on Normal Power vs. Emergency Power in case emergency switchgear fails - Review backup and response strategies for Medical Air Compressor system failure - Train clinical personnel on contingency plans for loss of Medical Air - Verify that the wiring and power distribution system to the Medical Air compressors are adequate. | Beacon Circuit
Breaker #1,2,3 | Fails to trip | Evaluate
relationship
between circuit
breakers for
each compressor
and fuse rating
for EPPS/1 fuse | Beacon to
annunciate
power failure
at ECC. | Service-
BeaconMedaes | March 15,
2006 | Tested and
verified on
4/26/06 | |----------------------------------|-----------------------|--|---|--|---|--| | Beacon | Control logic failure | BeaconMedaes | Beacon to | BeaconMedaes | March 15, | Tested and | | Starter/Controller | | confirmed that
design of control
logic failure will
not cause entire
system to fail | provide logic
failure to be
annunciated in
ECC | | 2006 | verified on
5/3/06 | | - | Lam | | | A | 9 1 | | | Beacon
Compressor
#1,2,3 | Fails to start | Review with
Beacon standard
protocol for
compressor
failure.
Determined that
compressor
failure to start is
not alarmed via
the Lag Alarm
ckt. | Lag Alarm can
be annunciated
in ECC for
early action
response.
Plumbers to
verify that
each
compressor is
cycling on/off
properly
during normal
rounds. | FM&O
Plumbing;
Service
BeaconMedaes | Lag Alarm
annunciate
d in ECC:
March 15,
2006
Plumbers
to continue
normal
rounds
procedures
- on going. | Tested and
verified on
5/3/06
Verify
performance
by observing
that three
compressors
cycle on/off. | | | | ACTION | PLAN | | | | |---------------------|---|---|--|---|----------------------------|--------------------------------------| | Process Step | Failure Modes | Risk Reduction
Action Steps | Error Detection
Action Steps | Person
Responsible | Implemen
tation
Date | Follow-Up
Measurements | | UCHC EPPS/1
Fuse | Improper fuse for load conditions | Review Beacon
Triflex
installation
guide; Beacon
does not
advocate using a
fuse in line with
circuit breakers. | Electrical Engr
will design a
plan to install
three separate
fused feeds to
each Beacon
Compressor;
BeaconMedaes
will review
design | Elec Engr
UCHC;
Service-
BeaconMeda
es. | March 15, 2006 | Tested and verified on 4/26/06. | | N. | Replacement fuses not readily available | Install replacement fuses on site | Label
replacement
fuses for
EPPS/1; check
that fuses are in
place on routine
basis | Elec
Engr,Electric
al Shop-
UCHC | Nov. 15,
2005 | Completed | | | Blows prematurely | BeaconMedaes
to analyze
compressor #1
failure and
suggest ways to
minimize risk of
EPPS/I fuse
blowing before
compressor
circuit breakers
open. | BeaconMedaes
recommends that
circuit breakers
not be used in
line with fuses.
Beacon does not
advocate using a
fuse in line with
circuit breakers.
Separate fuses to
be installed. | Elec Engr-
UCHC;
Service-
BeaconMeda
es | March 15, 2006 | Tested and
verified on
4/26/06 | | Air Intake | Contaminated | Review location
of RCA intake
duct for possible
sources of
contamination;
off Penthouse;
no possible
contamination. | 10 ppm CO
alarm should
provide early
detectionalrea
dy in place and
checked
routinely; each
compressor has
dedicated inlet
filter. | Elect Engr-
UCHC;
Plumbing
to check
intake pipe;
remove
filter if
present,
add screen,
and turn
intake
housing
down. | January 6,
2006
March 15,
2006 | Check for
cleaning of
intake; check air
intake filter
Verify on
plumbing rounds
log book. | |---------------------------|--------------|--|--|--|---|---| | Med Gas Pressure
Alarm | Inaccurate | Review
calibration of
RCA Med Gas
alarm switches
and pressure
gauges. | Review location of med gas pressure alarms with BeaconMedaes to ensure that correct point in the RCA system is being monitored to provide earliest sign of hi/lo pressure problems | Elect Eng-
UCHC;
Plumbing;
Clinical
Engr;
Service-
Beacon | January 6, 2006 | Determined that Quincy RCA compressors will continue to serve a secondary backup RCA system. Determined that Quincy RCA will remain on normal power as alternative to emergency power supply. | | | F | | | | | 16 | | Response
Protocol –Back
up cylinders,
regulators, hoses | Cylinders not
available/empty/regulators
missing/noses
missing/inadequate
emergency supply | Review RCA
backup
strategies and
check existing
systems to
respond to
potential RCA
system failure | Plumbing Shop
to check
availability of
back up systems
as part of routine
surveillance. | FM&O,
Clinical
Engr;
Plumbing
Shop; Resp
Therapy | Nov. 10,
2005 | On-going
monitoring | |--|--|---|--|---|--|--| | Response
Protocol- staff
knowledge | Emergency responders are not knowledgeable of backup systems and response protocols –ECC, facilities, plumbing, respiratory therapy, clinical engineering. | Train new
UCHC
personnel on
RCA backup
systems,
locations, and
plans. | Re-examine use of air compressors on adult ventilators; and ensure Resp Therapy staff are aware of back up systems for RCA | FM&O,
Clinical
Engr,
Plumbing;
Resp
Therapy | Nov. 10,
2005 | On-going | | UCHC wiring | Wire disconnects or opens | Verify wiring
and distribution
system to RCA
is properly
sized. | Perform annual
thermal survey
of wiring,
circuits, and
distribution
system from
power source to
RCA system to
look for hot spots | Elec Engr-
UCHC;
Electricians | Elec Engr-
UCHC
verified
that
thermal
survey is
completed
annually. | Routine
scheduled
thermal
surveys | # **Summary** - 1 Install three separate fused feeds to Beacon Air Compressors - 2 Beacon to annunciate compressor power failure/lab alarm/control logic failure at Environmental Control Center (ECC) - 3 Correct medical air intake piping protect from pigeons; remove extraneous filter - 4 Review backup and response strategies for Medical Air Compressor system failure 21 # Example: FMEA-MRI Safe NICU Ventilator Project Clinical Engineering coordinated a Failure Modes and Effects Analysis of a new Biomed Devices MRI-Safe infant ventilator. A team analyzed the flow of installing the special ventilator in the MRI procedure room; connecting and monitoring the infant during scanning; following MRI-safe procedures; and analyzing the contingency plans for emergency situations. 22 23 # Summary As a result of the Failure Modes and Effects Analysis... - 1 Modify regulators to have 2" pressure gauges for better visibility; - 2 Replace clear med gas tubing with color-coded tubing (green for O2 and yellow for Air); - 3 Non-ferrous code kit; - Physicians to research impact of tissue heating (SAR) and gradient noise levels on neonates. 24