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This paper presents the multi-based experts Failure Effects Analysis (FEA). The experts’
opinions differ substantially because the experts do not often agree on the level of the fail-
ure factors (failure probability, non-detection probability, severity of effect, and expected
cost) and the functions/subsystems attributes (e.g., importance). Therefore, conflict
always occurs in Group-based Failure Effects Analysis (GFEA). The approach uses fuzzy
Risk Priority Category (RPC) and group decision-making techniques to study both the
failure effects on the functions/subsystems and the failure risk category with uncer-
tain information. In addition, the approach uses the compensated operators to allow
the tradeoffs either among failure factors or among functions/subsystems attributes. A
solved example is presented to demonstrate the Group-based Failure Effects Analysis
(GFEA) application.
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1. Introduction

Failure Effects Analysis (FEA) is a fundamental risk analysis process involving

information acquisition, modeling, analysis, and decision, which result in the phys-

ical design improvement.1 In recent years, the published literature pertaining to

FEA has been concerned with developing either deterministic or fuzzy models in

order to identify, prioritize and eliminate the potential failures in the system.2 More-

over, some approaches focus on application of decision-making techniques leading

to improve the reliability, quality, and safety.3

In deterministic models, the Risk Priority Number (RPN) and Pareto Chart

(PC) were used as the principal knowledge acquisition to represent and score the
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system failure effects. The RPN is multiplication of failure factors (occurrence prob-

ability, non-detection probability, severity of impact, expected cost). These factor

values range between ‘1’ and ‘10’.4 In Ref. 5, to bring design of Failure Mode and

Effects Analysis (FMEA) in line with accepted probabilistic risk management the-

ory, the Society of Automotive Engineers (SAE) has replaced RPN metric with the

Critically Matrix (CM). The CM shows severity of a failure against its probability

of occurrence. However, the use of CM alone cannot compensate the major weak-

ness of the SAE approaches and of others. Thus, to meet the SAE requirements

and provide a robust FMEA model, the Bayesian Network was proposed and called

BN-FMEA.1

However, due to the shortcomings of deterministic RPN-based approaches (e.g.,

BN-FMEA) as pointed out in Refs. 4, 6 and 7, the RPN has been replaced with

Risk Priority Category (RPC) for performing fuzzy FEA in the system. Using

decision support system, the earliest fuzzy FEA methods can be classified as shown

in Table 1.

In Refs. 6 and 9, the fuzzy method based on linguistic variables, Grey theory,

and Maximin method was used to determine an RPC to evaluate the risk level of the

system. The approaches allow considerable weighting of severity factor associated

to a cause of failure. Due to using both linguistic variables for evaluating failure

factors and Grey theory to prioritize the risk of failure without utility function,

the proposed methods can be considered as a breakthrough in FEA. However, one

drawback of these approaches is that the weight of criteria and the scores of the

failure causes must be assigned subjectively. Later, in Refs. 10 and 11, the Analytic

Hierarchy Process (AHP) technique was proposed to find the preferential weight of

the failures in order to determine the failure risk priority number. This approach

based upon three principles: decomposition, comparative judgements, and the syn-

thesis of priorities. It has several shortcomings for failure effects analysis, such as

man-made inconsistency in pair wise comparisons, and rank reversal when new

failures are introduced. Thus, the knowledge base rule as a new approach for FEA

Table 1. Fuzzy decision-making methods.

Method category Method name Reference

Maximin Methods Chang et al. approach 6
Puente et al. approach 9
Xu et al. approach 14

Linguistic Methods Kwok et al. approach 12
Pillary et al. approach 15
Wang et al. approach 17

AHP Methods Bozdag et al. approach 11

TOPSIS Methods Braglia et al. approach 16

Weighting Methods Umano et al. approach 8
Wang et al. approach 20
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was introduced. In Ref. 12, using linguistic variables, authors developed the fuzzy

single-based expert rules to determine the RPC of the failure. The approach utilizes

Grey theory to avoid the use of utility function. However, FEA is a system tech-

nical risk analysis that extracts knowledge about the potential failure mode from

a group of experts so-called expert knowledge base system with possible conflict

in experts’ opinions. The knowledge based system uses the knowledge encoded in

some form such as rule-based systems, and decision tree. Generally, the construc-

tion of a failure effect knowledge base has been carried out by interviewing experts

in failure effect and painstakingly translating the experts’ opinions into an appro-

priately structured set of rules (e.g., if-then).13 In Ref. 14, using min-max function

and linguistic variables, authors proposed an approach that comprises the expert

knowledge base rule and the failure factor interfaces to perform FEA with uncer-

tain and imprecise information. This approach maps the knowledge obtained from

experts into one or more if-then rule(s). However, the following sources of potential

inconsistency may result in conflicting conclusions in the knowledge base system:

— Conflict of rules (i.e., ‘if’ parts of the rules are similar and ‘then’ parts are

different)

— Subsumption (i.e., two or more rules have the same result, but one contains

additional restriction on the situations in which it will succeed).

In addition, due to time consuming, complexity of consistency check, and dif-

ficulty of maintenance of knowledge base approach, the fuzzy TOPSIS approach

for FEA was proposed to avoid the definition of a knowledge base supported by

several qualitative rules.16 Though TOPSIS method has some advantages, it suffers

from sensitivity analysis because the criterion with the highest score has dispropor-

tionate influence in the failure ranking process. On the other hand, in Ref. 17, to

dilute conflict in decision group, authors presented a conflict resolution model to

integrate multiple possibility distribution that can be used in Group-based Failure

Effects Analysis (GFEA). The drawback of this model is the use of MINMAX func-

tion in aggregation technique, which is not adequate to study the failure effects and

failure risk priority when tradeoffs exist among them.18,19 Therefore, using fuzzy

aggregation and fuzzy compensation technique in MINMAX method, our objective

is to present the GFEA approach in order to mitigate the problems (e.g., sensitiv-

ity and consistency analysis) associated with proposed FEA approaches (see basic

concept of group decision making in Appendix-B).

2. Problem Description

In standard FMEA, either Risk Priority Number (RPN) or Risk Priority Category

(RPC) is used not only to construct the system failure effects model (deterministic

or fuzzy) but also to implement risk analysis. Most past publications used fail-

ure factors (Failure probability, Non-detection probability, Severity of effect, and
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Expected cost) to assess either RPN or RPC of the potential failure. The RPN-

based risk analysis, however, suffers from RPN shortcomings as follows6,9:

(i) RPN does not take into account the quality of product.

(ii) Multiplication of factors in RPN expression is not always appropriate way

for risk priority analysis.

(iii) The use of RPN does not satisfy the requirements of measurement.

(iv) Non-consistency of relation for different factors in RPN (e.g., linear rela-

tion between failure probability and probability scale and non-linear relation

between non-detection probability and probability scale).

(v) Evolvement of identical RPN value for different sets of factors.

(vi) Overlooking of relative importance among failure factors.

Furthermore, traditional RPN cannot deal with

(vii) Tradeoffs among failure factors.

(viii) Divergence of experts’ opinion about failure factors or their importance.

(ix) Imprecise algebraic rule to assign a score to failure factors or their importance.

On the other hand, fuzzy approaches replace RPN with RPC that assigns a risk

priority class to each cause of the failure in FEA. Because FEA is a group-based

risk analysis technique (i.e., multi-based experts’ opinion),13 some researchers have

used either decision techniques or knowledge base system to develop the group-

based FEA model to deal with following issues:

(i) The opinions differ because the experts do not often agree on importance of

the risk criteria (Failure factors).

(ii) Tradeoffs exist among risk criteria.

(iii) Experts are unable to assign an exact numerical value to importance of the

risk criteria.

(iv) An expert is unable to express his/her opinion via numerical value for the

relative relation of the potential failures to the certain risk criterion.

Therefore, due to human brain process, the use of fuzzy linguistic values is the

most realistic method.21 Moreover, having more than one risk criterion requires

a structured approach for GFEA problems. The knowledge base approach suffers

from conclusion conflict due to conflict of rules and subsumption. In addition, it

is a time consuming method, which is inflexible to change. On the other hand,

setbacks of the decision-making approaches are the use of Maxmin function and

difficulty in performing sensitivity analysis. The new method must encompass the

divergence of expert opinions that arises from fuzziness, and the complexity of both

the failure effect and the importance of the functions/subsystems. Thus, the method

must replace averaging operators (e.g., arithmetic mean, etc.) with compensatory

operators to improve the accuracy of the aggregating process in fuzzy GFEA.18,19
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To develop the model, we consider a system that includes ‘I’ failures, and ‘J’ risk

criteria under study by ‘K’ experts and uses the following notations:

Notations

i Index for failure, i = 1, 2, . . . , I

j Index for risk criterion, j = 1, 2, . . . , J

fj ‘j’th risk criterion

k Expert index in group k = 1, 2, . . . , K

Ψ Maximum number of categories

S A set of fuzzy linguistic variables (relative importance of

decision factor or relative failure impact)

ξ Index for fuzzy variable ξ = 1, 2, . . . ,Ψ

ς Index for fuzzy variable ς = 1, 2, . . . ,Ψ

Vijk Index of RPC factor for ‘i’th failure, ‘j’th risk criterion,

and ‘k’th expert

Sξ Fuzzy linguistic variable for defining the relative failure

impact to risk criteria or the relative importance of the

functions/subsystems.

Ik(fj) The relative importance of ‘j’th criterion according to

‘k’th expert

Pik(fj) the relative level of impact of ‘i’th failure to ‘j’th criterion

obtained from ‘k’th expert

RPCik Compensated Risk Priority Category (RPC) of the relative

impact of the ‘i’th failure to the system according to ‘k’th

expert’s opinion

RPC[ik] ‘k’th maximum compensated Risk Priority Category of the

relative impact of the failure ‘i’ to the system

αjk Index of importance category of ‘j’th risk criterion which

is assigned by ‘k’th expert

βijk Index of ‘impact category of ‘i’th failure to ‘j’th risk cri-

terion, which is assigned by ‘k’th expert

γ Degree of aggregation

Int[n] Integer value of a number, ‘n’

Rnd[n] Nearest integer value to a number, ‘n’

Setk(i) A set composed of RPC’s of ‘i’th failure obtained from ‘K’

experts

Ordk(i) A ranked set composed of RPC’s of ‘i’th failure obtained

from ‘K’ experts

3. Group-based Failure Effects Analysis Model

Consider a system with ‘J ’ risk criteria (i.e., failure factors and func-

tions/subsystems). They can be expressed as score, percentage, and probability.
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Table 2. Fuzzy linguistic variables.

Index Linguistic Variable Probability Percentage Score

S7 Perfect-(P) 0.5 0–5 10
S6 Very High-(VH) 0.1 6–15 9
S5 High-(H) 0.05 16–25 8
∗ Medium-High 0.01 26–35 7
S4 Medium-(M) 0.005 36–45 6
∗ 0.001 46–55 5
∗ 0.0005 56–65 4
S3 Low-(L) 0.0001 66–75 3
∗ VeryLow-Low 0.00005 76–85 2
S2 VeryLow-(VL) <0.00005 86–99 1
S1 Non-(N) 0 100 0

∗Means next level.

The risk criterion has its importance with respect to the perceptions of the mem-

ber of a group (made up of ‘K’ experts). Also, ‘I’ potential failures are listed.

Based on ‘k’th expert’s opinion, each one has a relative impact on the system rela-

tive to a risk criterion. As the experts cannot assign the exact number to either the

importance of risk criteria or the failure impact on a system, the use of linguistic

variables becomes the best alternative.21 Table 2 presents nine linguistic variables

denoted by ‘S’ with subscripted index rank to express the importance of the risk

criteria and the system failure impacts relative to a risk criterion. To minimize the

classification error and have a consistent GFEA model, we have based our linguistic

variables upon the fuzzy method and Gray relational analysis used in Ref. 9. Gray

theory provides a measure to analyze relationships between discrete quantitative

and qualitative series.

Using the linguistic variables, the Decision Matrices are defined according to

the experts’ opinion. For example, decision matrix of ‘k’th expert is

MAT (k)=























Ik(f1) Ik(f2), . . . , Ik(fJ)

P1k(f1), P1k(f2), . . . , P1k(fJ )

P2k(f1), P2k(f2), . . . , P2k(fJ )

PIk(f1), PIk(f2), . . . , PIk(fJ)























I×J

where Ik(fj) states the importance of ‘j’th risk criterion and Pik(fj) is the relative

impact of ‘i’th failure on the system in relation with ‘j’th risk criterion (‘fj ’). In

the case of divergence of decision matrices, we have developed the GFEA model not

only to dilute the divergence in the failure risk analysis and but also to prioritize

the system failures. The method uses the principal concept of ranking, maximum,

and minimum for the linguistic variables as follows:
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Definition 1. Ranking. Using the linguistic variables listed in Table 2, experts

determine the importance of the risk criteria (i.e., failure factors including failure

probability, non-detection probability, severity of effect, expected cost, and func-

tions/subsystems importance) and the system failure impacts in relation with a risk

criterion. Using ‘S’ to denote the term linguistic variable, and subscripted with an

associated index rank, the rank for the failure factors and the function attributes can

be expressed. For example, for impact of a failure on a system in relation to severity

factor considered to be ‘VeryHigh (VH)’, it is represented in the index by S6.

To assign RPC to failures based on a failure factor, we simply compare their

indices. If a failure factor of failure ‘A’, denoted by ‘Sξ’, is greater than the failure

factor of failure ‘B’ in a system, denoted by ‘Sς ’, the rank of failure ‘A’ is higher

than the rank of failure ‘B’. In the other words, we write ‘Sξ’ > ‘Sς ’ as ξ > ς.

For example, in Appendix-A, the rank of the failure probability (failure factor) of

three failures (Analog Personality Module, RS232 Com1, Power Conditioning) are

assigned Low(L), High(H), and Medium(M) by expert 1. As presented in Table 2,

the corresponding indices to ‘S’ for ‘L’, ‘M ’, ‘H ’ are 3, 4, and 5, respectively. Thus,

in the opinion of expert 1, and within the definition that S5 > S4 > S3, the rank of

RS232 Com1 failure is higher than the rank of Analog Personality Module failure

and of Power Conditioning failure relative to only failure probability factor.

Definition 2. Maximum and minimum for two linguistic variables. Consider two

system failures with assigned system impact ranks (linguistic variables) relative to a

specified failure factor (e.g., Non-detection probability). To identify the failure with

higher system impact relative to the failure factor, a maximum function is required.

With respect to Definition 1, the failure with maximum impact in relation to the

specified failure factor in the system is the one with the highest rank (i.e., greater

index of ‘S’), thus,

Max(Sξ, Sς) = Sξ (1)

where index ξ is greater than index ς.

For example, using Table 2 to map the indices of two linguistic variables ‘Per-

fect (P)’ and ‘VeryHigh (VH)’, we assign indices 7 and 6 to ‘S’ for ‘Perfect (P)’

and ‘VeryHigh (VH)’, respectively. Thus, we write

Max(‘P’, ‘VH’) = Max(S7, S6)

With respect to Definition 1, the rank of the linguistic variable ‘Perfect (P)’ is

higher than that of ‘VeryHigh (VH)’ because S7 > S6. Thus,

Max(‘P’, ‘VH’) = ‘P’

Also, minimum of two fuzzy linguistic variables is equal to the lowest ranked one

(i.e., smaller index of ‘S’), thus,

Min(Sξ, Sς) = Sς (2)

where index ξ is greater than index ς.
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To better describe the steps of the Group-based Failure Effects Analysis method,

consider the decision matrix in Appendix A. For the example presented in Sec. 4,

the new format of decision matrix combines all ‘K’ experts’ decision matrices. The

first top three rows of the matrix show the relative importance of the risk cri-

teria according to three experts. For example, experts 1, 2, and 3 expressed the

importance of the Main Console VH, H, and P, respectively. The fourth row is

the risk criteria made up of thirteen factors (i.e., Suspension tester subsystems

and failure factors). The other rows are the potential failures and their relative

impact to the risk criteria in the format of “X1-X2-X3” corresponding to experts

1, 2, and 3. For example, the relative impact of the R232 interface disconnec-

tion (Failure) on the Main Console (Risk criterion) is categorized “H-VH-VH” by

experts (i.e., expert1 assigns High(H) and expert2, and 3 assign VeryHigh(VH)

to the relative impact of the R232(com) interface disconnection on the Main

Console).

To dilute the divergence of experts’ opinion and to aggregate the opinions, the

Group-based Failure Effects Analysis method has constituted the steps as follows:

Step 0. Determine a set of risk criteria and a set of potential failures.

In Appendix A, Table 6 shows Main Console, Main Console Motor, as effect criteria

and fifty four potential failures in column one.

Step 1. Define importance of risk criteria.

Using linguistic variables of Table 2, ‘k’th expert determines the importance of

all ‘J ’ risk criterion (i.e., Ik(fj), where k = 1, 2, . . . , K and j = 1, 2, . . . , J).

For example in Appendix A, Table 6, expert 1 expressed the importance of

all failure factors (Main Console, Motor Control Console, . . .) VH, P, VH, . . . ,

respectively.

Step 2. Define the relative impact of the potential failure in relation with risk

criteria.

Obtain the level of impact of the failure ‘i’ to the on the system in relation with

the criterion ‘j’ from ‘k’th expert (e.g., Pik(fj)). For example, the relative impact

of Circuit Breaker input cable (Failure) on the system in relation with the Main

Console (Risk criterion) is categorized “N-H-H” by experts (i.e., expert1 assigns

None(N) and expert2, and 3 assign High(H)).

Step 3. Determine risk priority category of failure ‘i’ according to perception of

‘k’th expert.

There are always tradeoffs among decision factors. The tradeoffs cause the iden-

tical RPC for different scenarios. In such situation, the use of the Minimum and

Maximum functions is not adequate for studying failure risk analysis.17,18 Thus, to

compute the category of the impact of failure according to certain expert’s opin-

ion, Eq. (3) is used. It encompasses the divergence of expert’s opinion in decision
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matrices. Also, to deal with tradeoffs among the decision factors, it is equipped to

compensate operations proposed by Refs. 17, 18.

RPCik = Min{Cmp(Ik(f1), Pik(f1)), Cmp(Ik(f2), Pik(f2)), . . . ,

Cmp(Ik(fJ ), Pik(fJ ))} (3)

where Cmp(Ik(fj), Pik(fj)) is the compensated maximum function for aggregating

the importance of ‘j’th risk criterion (i.e., Ik(fj)) with ‘i’th failure effect on the

system in relation with ‘j’th risk criterion (i.e., Pik(fj)) according to ‘k’th expert’s

opinion. By substituting Ik(fj) and Pik(fj) with corresponding indices according

to Table 2 (i.e., Sαjk and Sβikj) in Eq. (3), we get

RPCik = Min{Cmp(Sα1k, Sβik1), Cmp(Sα2k, Sβik2), . . . ,Cmp(SαJk, SβikJ )} (4)

where

Cmp(Sαjk, Sβikj) = SVijk
(5)

and

Vijk = Rnd

(

γ · Max(αjk, βijk) + (1 − γ) · Int

[

αjk + βijk

2

])

(6)

where γ is the degree of aggregation (0 ≤ γ ≤ 1). For γ equal to one, Eq. (5) is same

as Eq. (1) and setting γ equal to zero yields the arithmetic mean for Eq. (5). Thus,

by substituting Eqs. (5) and (6) into Eq. (4), we have RPCik that indicates risk

priority category of ‘i’th failure in the system based on ‘k’th expert’s perception.

For example, the RPC of failure 1 in Appendix A (i.e., RS232(Com1)) based on

expert 1 is expressed by

RPC11 = Min{Cmp(H,VH), Cmp(N,P), Cmp(N,VH), Cmp(N,VH), Cmp(N,H),

Cmp(N,M), Cmp(N,VH), Cmp(N,VH), Cmp(N,VH), Cmp(N,VH),

Cmp(H,VH), Cmp(H,VH), Cmp(H,VH)}

Using indices of Table 2, RPC11 is defined as

RPC11 = Min{Cmp(S5,S6),Cmp(S1,S7),Cmp(S1,S6), Cmp(S1,S6),

Cmp(S1,S5),Cmp(S1,S4), Cmp(S1,S6), Cmp(S1,S6), Cmp(S1,S6),

Cmp(S1,S6), Cmp(S5,S6), Cmp(S5,S5), Cmp(S5,S6)}

With respect to Eqs. (5), and (6) and Definition 1 and γ = 0.8, we get

RPC11 = Min{S6, S5, S4} = S4.

The above means that the risk priority category of the failure 1 is “Medium” accord-

ing to expert 1. Similarly, RPC of Failure 1 is defined “Low” for experts 2 and 3.
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Perform steps 1 to 3 for all experts to determine RPCik where i = 1, 2, . . . , I,

and k = 1, 2, . . . , K.

Step 4. Rank the RPC’s of the failure.

Using the Definition 1, we generate a set of ranked risk priority category for each

failure. Thus, the set of RPC’s for ‘i’th failure is expressed by

SetK(i) = {RPCi1, RPCi2, . . . ,RPCiK} (7)

with respect to Definition 1, the ranked set is

OrdK(i) = {RPC[i1], RPC[i2], . . . ,RPC[iK]} (8)

where, RPC[ik] is ‘k’th maximum in the ranked list of the set element.

For example, the set of RPC’s for failure 1 in Appendix A based on three

experts is

Set3(1) = {M, L, L}.

Thus, the ranked set is

Ord3(1) = {M, L, L}.

Step 5. Determine aggregation categories.

Depending upon number of experts agreed on certain level on failure impact, the

aggregation category must be generated. Assume ‘ε’ is total number of experts

agreed on certain failure and criterion. Using ratio ε
K

, the aggregation category

maps ‘ε’ to relative linguistic set of Table 2. For example, the aggregation category

is ‘Perfect’ when all experts agree on certain level of the failure effect on the system

(i.e., ε = K) . To map ‘ε’ , the Eq. (9) presents the aggregation function used in

the model.

Agg(ε) = SInt[1+(ε.Ψ−1

K
)] (9)

where ‘ε’ is the number of experts that satisfies aggregation function (0 ≤ ε ≤ K).

Using Table 2, Table 3 presents the aggregation categories of the example given

in Appendix A for a group comprises three experts (K = 3) and seven levels of

linguistic variables (Ψ = 7). As a result, the level of agreement will be increased as

shown in Table 3 by increasing ‘ε’.

Table 3. Aggregation Categories for group of three
experts (K = 3).

ε Ψ Int
h

1 +
“

ε.Ψ−1

K

”i

Index Category

0 7 1 S1 Non (N)
1 7 3 S3 Low (L)
2 7 5 S5 High (H)
3 7 7 S7 Perfect (P)
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Step 6. Compute comprehensive risk priority category of the potential failures.

In the Group-based FEA, the failure is associated with a set that includes ordered

elements (i.e., RPC’s) corresponding to the members of group. The comprehensive

risk priority category for each failure is the aggregation of the RPC’s of the certain

failure. Thus, by substituting Agg(ε) function (Eq. (9)) into Eq. (10), the compre-

hensive aggregated failure impact of ‘i’th failure in the system is expressed by

RPCi = Max{Min(Agg(ε), RPC[iε]), Min(Agg(ε − 1), RPC[i(ε−1)]), . . . ,

Min(Agg(1), RPC[i1])} (10)

where RPC[ik] is ‘k’th maximum in the ranked list of RPC of ‘i’th failure and

i = 1, 2, . . . , I.

For example, using Table 3 and Ord3(1)in step 4, the RPC[13] is defined as

RPC1 = Max{Min(L,M), Min(M,L), Min(P,L)}=L

By performing the step 6 for all failures (i = 1, 2, . . . , I) and using Definition 1, a

set made up of the ranked comprehensive risk priority category can be generated .

Step 7. Perform sensitivity analysis.

In order to ensure the consistency of GFEA result, a slight change in either the

level of risk criteria importance Ik(fj) or the level of failure impact on risk criteria

Pik(fj) for I = 1, 2, . . . , I, j = 1, 2, . . . , J and k = 1, 2, . . . , K. if slightly change of

them produces a completely different result, tune the aggregation degree to dilute

the divergence of the certain expert on the result. Moreover, by changing γ from 0

to 1 with incremental step equal to 0.1 and perform steps 3 to 6, generate RPC’s

corresponding to the certain value of γ. Based on Pareto Chart, if the 15% of

top ranked failures is always similar for different value of γ, the GFEA result is

consistent and independent from γ. Otherwise, conflict level of expert’s opinion

needs to be diluted by removing the predefined items of decision matrix (Ik(fj),

Pik(fj)) that slightly change them causes inconsistency of the result. Perform steps

3 to 6 to find the result. A solved example in the next section is presented to

demonstrate sensitivity analysis procedure.

4. Example

Military vehicles are periodically required their suspension to be tested. Thus, a

new model of suspension tester is developed to perform the test in the field without

returning the vehicles to shop. This device comprises digital and analog circuitry

and hydraulic subsystems as shown in Appendix A. The device performs the test in

several steps (i.e., engage, lift, release and disengage). In order to study the RPC of

the failures and rank them for improving physical design, a group including three

experts (e.g., design engineer, reliability engineer, and sales/marketing engineer)

is carrying out FEA. The system has 12 risk criteria (9 subsystems and 3 failure

factors) as shown in the fourth row of the decision matrices in Appendix A. The
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Table 5. Degree of aggregation sensitivity analysis.

Degree of Aggregation

15% Top Ranked Failures 0.8–1 0.7–0.8 0.5–0.6 0.3–0.4 0.0–0.2

120VAC-DPST Relay High High High Medium Medium
120VAC-Circuit Breaker High High High Medium Medium
Circuit Breaker input Cable Medium Low Low Low Low
Circuit Breaker input SW 1 Medium Low Low Low Low
Circuit Breaker input SW 2 Medium Low Low Low Low
Circuit Breaker input SW 3 Medium Low Low Low Low
Acc. 1A (−15)V Medium Low Low Low Low

Rows 1 to 3 of the decision matrices are the relative importance (category) of

those risk criteria corresponding to experts 1, 2, and 3. Moreover, the experts

identified 59 potential failures that were listed in row 5 to the end. In each row,

a failure is associated with category of its impact to defined criteria in format

of “X1-X2-X3” corresponding to experts 1, 2, and 3. For example, the relative

impact of the R232(com) interface disconnection (Failure) on the Main Console

(Risk criterion) is defined “H-VH-VH” by experts (i.e., expert 1 assigns High(H)

and experts 2, and 3 assign Very High(VH) to the relative impact of the R232(com)

interface disconnection on the Main Console). Table 6 (see Appendix A) depicts

divergence/conflict of experts’ opinion that comes from human brain process and

the fuzziness of the failure impact. Shortcomings of single-based expert methods

that are RPN-based or RCP-based, risk analysis does not allow using them for such

system. Therefore, using GFEA model with a degree of aggregation (e.g., equal to

0.8), Table 4 shows subsystems such as Winsys, power supply, and circuit breaker

have high ranked failures and they need to be reengineered. To ensure the robustness

of the model, the sensitivity analysis is performed. Table 5 presents that the 15%

top ranked failures are the same for different values of the aggregation degree and

ranking differentiation for γ > 0.8 is justifiable than ranking differentiation for

γ < 0.8. RPC of the failures is different and it corresponds to the value of γ because

γ compensates the aggregation function with arithmetic mean. Furthermore, a slight

change of parameters in decision matrices does not result in completely different

RPC’s, that lead to the consistency of GFEA method.

5. Conclusion

The FEA methods focus on decision leading to improve the reliability, quality, and

safety of the system. They are classified to deterministic and fuzzy approaches,

which are single-expert based or multi-expert based. The methods (i.e., knowledge

base system, decision support) use RPN or RPC to evaluate the risk level of the

system. However, there are sources (i.e., Conflict of rules, Subsumption) of potential

inconsistency may result in conflicting conclusions in the knowledge base system.

On the other hand, the decision support methods do not take into account the
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tradeoffs among the risk factors and are unable to perform sensitivity analysis on

the failure factors.

This paper presented a group-based FEA model to aggregate the intuitive deci-

sion of experts about importance of failure factors and failure effect on these factors.

As demonstrated, the approach is built upon not only aggregating the perceptions

of experts concerning the importance of failure factor and failure effect, but also the

ranking of these failures with respect to their RPC. Furthermore, using a degree of

aggregation (γ) and a slight change in parameters, the newly developed model can

perform sensitivity analysis to judge the consistency of the result. By having con-

sistent ranked failures as a road map, the reengineering process can be executed for

improving the functions/subsystems that either generate the top ranked failures,

or are affected by the top ranked failures. For future work, this approach requires

the detection/isolation/recovery method for finding the inconsistence experts and

diluting their opinions in GFEA.
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Appendix A: Dicision Matrix

Table 6. Decision Matrices.



Group-based Failure Effects Analysis 307

Appendix B: Basic Concept of Group Decision Making

Within group decision-making processes that are based on fuzzy linguistic

preference, there exists a set of alternatives (Potential Failure) and a set of

decision-makers that are denoted by failure and expert sets, respectively. Decision-

maker (DM) bases his/her decision upon certain risk criteria (i.e., failure factors

and functions/subsystems importance). These criteria can be independent or depen-

dent. When criteria are independent, the importance weights of criteria are treated

as coefficients of an additive aggregation rule. By defining Xijk as fuzzy preference

relation between ‘i’th alternative (the potential failures) and ‘j’th criterion (fail-

ure factors and functions/subsystems) taken from ‘k’th DM, the decision matrix

for ‘k’th DM can be developed as shown in Fig. 1. What makes the decision pro-

cess difficult is the involvement of both the competency of the alternatives and the

divergence of decision makers’ perception of those alternatives.7 In such situations,

not only is the matching technique used to find a match between alternatives and

preferences for each individual decision-maker, but also aggregating techniques are

implemented, as a second step to combine perceptions of all decision-makers.8

DMk Risk Criteria 
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Fig. 1. Decision matrix of DMk.




