
Hecht, An and Hecht 1 Computer-Aided FMEA

COMPUTER-AIDED SOFTWARE FMEA†
Herbert Hecht, Xuegao An and Myron Hecht

SoHaR Incorporated, Culver City CA

 1. Introduction

Model-based software development, particularly when it utilizes UML tools, provides a discipline
and artifacts that make programs more transparent. We use these capabilities to automate significant steps
in the generation of software FMEA. Automation not only reduces the labor required but also makes the
process repeatable and removes many subjective decisions that have previous ly impaired the credibility of
software FMEAs. The computer-aided software FMEA discussed in this paper can be the central
organizing element for the verification and validation (V&V) of embedded software for real-time
systems. The adoption of this technique provides large economic benefits because V&V frequently
consumes the majority of the development resources for embedded software.

The role of software FMEA in V&V and previous work in software FMEA generation are
described in the next section, followed by an overview of the automation technique. Section 4 provides
details of extraction of failure mode information from the UML development tool, and Section 5
describes the translation of failure modes to failure effects. The last section discusses the identification of
detection and compensation provisions for the failure effects and the utilization of the Remarks column..

This research was conducted as part of the MoBIES∗ project, sponsored by DARPA/IXO. The
authors want to acknowledge the encouragement received from Dr. John Bay of DARPA and Raymond
Bortner of AFRL. The software used in the examples is part of the Open Control Program developed by
Boeing St. Louis for the MoBIES project.

2. The Role of FMEA in V&V

A large part of the cost of developing critical, and particularly embedded, software is attributable

to verification and validation activities intended to provide assurance that
• The software satisfies the specification
• Creditable failure modes that can cause serious consequences have been eliminated or

compensated for (e. g., by alternate processing provisions)
• Required attributes have been provided (e. g., modifiability)

The second bullet is usually the most difficult one and the one addressed in this paper. For the hardware
portion of a system the Failure Modes and Effects Analysis (FMEA) has long been the organizing
principle for design reviews as well as for testing to show the absence of, or satisfactory response to,
critical failure modes.
 The contributions of FMEA to verification of critical systems include identification of

• End (system level) effects for each failure mode
• Severity classification of these effects
• Means of detection of the failure mode
• Compensation or mitigation provisions
• Effects of additional or associated failures (in the Remarks column)

The system level effects and the associated severity classification are used to prioritize the verification
effort, including the testing. The detection means is a further clue to the potential threat posed by a failure
mode. Local detection, such as an alarm when a power supply fails, provides the best protection because
it indicates directly what has failed and permitting immediate repair and recovery actions. Detection by an

† Portions of the research leading to this paper were conducted under contract F33615-02-C-3253
∗ MoBIES is an acronym for Model-Based Integration of Embedded Systems.

Hecht, An and Hecht 2 Computer-Aided FMEA

intermediate effect, e. g., inability to access a disk, is less effective because this could be due to failure in
the disk mechanism, in the control electronics, in the power supply , or in the cables connecting these
units. Least effective is detection at the system level, such as no output or no response, because this could
be caused by many failure modes. Thus failure modes that can only be detected at the system level
warrant a high level of V&V. This is recognized in the risk priority number (RPN) of a recent SAE
standard1 that classifies risk as a product of severity, frequency and difficulty of detection. Compensation
(e. g., redundancy) or mitigation (load shedding in a power system) reduce the severity of the end effects.
However, the dependence of the reduction on the functioning of the compensation should be noted in the
Remarks column (e. g., for a severity IV failure mode the Remarks may read “Severity II if redundant
element fails”).

Because of the importance of the FMEA for control of failure modes there have been attempts to
generate a procedure for software FMEA for at least twenty years2,3. At the present time there are
fundamentally two approaches for partitioning software for a system FMEA: functional4 or by output
variables, considering one variable at a time5. Functional partitions of a program are subjective and
different analysts can come up with different lists of functions for a given program. In particular,
exception handling may not be recognized as a distinct function in spite of its great potential for causing
failures6. A software FMEA based on failures of a single output variable misses conditions in which a
programming error affects multiple variables.

The advent of model-based system and software development, and particularly of the Unified
Modeling Language (UML)7, has motivated us to take a fresh look at overcoming the previous difficulties
in generating software FMEA. The features of UML that are particularly important to this process are

• Formatted specifications with controlled relations to the code
• A rich assortment of automatically generated development artifacts
• Allowed actions of code based on the class specification (since UML uses an object-

oriented paradigm)
• Ability to tag artifacts for assessment as part of the FMEA effort

The exploitation of these capabilities for computer-aided software FMEA are described in the
following sections of this paper.

3. Overview of UML-Based Software FMEA

The implementation of these concepts for computer-aided generation of software FMEA is

diagrammed in Figure 1 and details are discussed in la ter sections of this paper.The central portion of
Figure 1 is an FMEA worksheet in a format derived from MIL-STD-16298. The purpose of a worksheet is
to list and classify failure modes so that decision makers can concentrate on those with the highest
importance. One of the items that make a failure mode important is the severity, shown in a column
somewhat right of the center. Following the severity column are the detection method and the
compensation, both of which have important bearing on the management of a failure mode as has been
mentioned before.

The four columns that we have just discussed can be considered the output of the FMEA
worksheet. They are significant for the management of failure modes, i. e., to accept them or to decide
that they need to be eliminated or mitigated. We will now turn to the columns on the left of the worksheet,
data input that represents information derived from the program file and from system data.

The identification number (ID) for failure modes is usually a hierarchical construct of type
aa.bb.cc.dd where aa is the index of a major software component (e. g., configuration item), and the other
indices refer to successively lower partitions. There is no limit to the level of indentation that can be used.
Once the lowest level is reached, usually a method in UML nomenclature, the failure modes can be
identified by letters that have mnemonic significance (e. g., s for stop, i for incorrect result) or by numeric
suffixes.

Hecht, An and Hecht 3 Computer-Aided FMEA

The component name is
obtained from the UML
listing as shown at the top
of the figure, and the ID
will be automatically
assigned based on the
indenture levels of the
listing. The ability to
identify methods automat-
ically from the UML tool
listing and to enter them
into the worksheet is a very
significant advance over the
previous “functional”
decomposition. The
software FMEA thus
becomes comparable to a
hardware FMEA that is
generated from a bill of
materials. It makes the
FMEA and V&V activities

based on it “complete”.
Failure modes are assigned in a computer-aided mode but this operation can change to a more

automated manner (at least for a given programing environment) as experience is gained. Details of the
failure modes assignment and of the association of failure effects with a given failure mode are discussed
in the next section. The severity is directly associated with system level effects and can be assigned
automatically in a given project context.
 The entries in the detection method, compensation and Remarks columns are described in Section
6. These entries depend heavily on knowledge of the software and system design.

Figure 1 shows a worksheet for only a single operational mode whereas most practical systems
have multiple modes or phases that can result in significantly different failure effects. An example is an
airborne missile that has test, carry and free-flight modes. Failure modes of the guidance software that
have very severe effects in the free-flight mode have only marginal effects in the other two modes.
Another column can be added to the FMEA worksheet to denote the operational phase or mode for which
failure effects are evaluated.

4. Failure Mode Identification

In 2002 Haapanen and Helminen9 published a survey of the literature on software FMEA. It listed

over 20 different failure modes, including hang, stop, missing data, incorrect data and wrong timing of
data. Many of the distinctions are important for teaching and for improvement of programming practices
but they can be collapsed for purposes of the FMEA if they lead to identical effects. Responsible software
developers recognize the possibility of these failure modes and protect against them by assertions and
testing. It is thus only necessary to postulate typical failure modes to serve as initiators in checking for
the presence of defensive programming constructs.

All program classes and methods have the potential of causing a crash, cessation of processing
with possible impairment of computer resources, and a stop, cessation of processing without impairment
of computer resources and usually with a diagnostic on the location of the stop. We refer to stop and crash

ID COMPONENT

F
A

IL
U

R
E

M
O

D
E

LO
C

A
L

E
FF

E
C

T

N
H

L
E

FF
E

C
T

S
Y

S
TE

M
E

FF
E

C
T

S
E

V
E

R
IT

Y

D
E

T
E

C
T

IO
N

M
E

TH
O

D

C
O

M
P

E
N

-
S

A
T

IO
N

R
E

M
A

R
K

S

AUTOMATED
ASSIGNMENT

SEE SECTION 4 SEE SECTION 5 SEE SECTION 6

 Figure 1. Generation of Software FMEA

Hecht, An and Hecht 4 Computer-Aided FMEA

as basic failure modes. Individual methods that output data have a further failure mode of faulty message.
For other cases failure to initialize and failure to release memory may also have to be considered. To
handle conditions that do not fit these predefined failure modes our taxonomy lets the user define other
failure modes. When a new program method is accessed by the analyst, the two basic failure modes are
automatically entered for it. If the method provides output the incorrect output failure mode is added. The
recognition of a method that provides output is at present up to the analyst but is capable of being
automated. The invocation of the other failure modes is up to the analyst as shown in Figure 2.

Figure 2 Failure Mode Screen

5. Local Failure Effects and Transition to NHL and System Level

 The local effect of a function/method failure of a class is usually assessed where a communication
with another function takes place. The local effect can be a pass-through of a failure mode, such as a
corrupted message where no detection provisions were in place, or the failure mode may be modified by
local detection or compensation provisions as shown in the remarks column of the following table.

Table 1. Local Failure Effects

Local Failure Effect Remarks

None Failure mode is insignificant or compensated for

Late response Result of a successful retry

Corrupted message Failure of error detection

Loss of data Unsuccessful error correction

Stop Locally detected crash of a method

Crash

.

Hecht, An and Hecht 5 Computer-Aided FMEA

In addition to the listed failure effects the user can add any number of user-defined effects. At
each of the higher levels we need to distinguish between failures due to native failure modes and those
caused by incorrect input. An important source of native failure modes are methods that are added to a
parent class to create a child class. The effects of native failure modes are analyzed as described above for
local failure modes.
 A different method of analysis is applicable to failures due to incorrect input received at a higher
level from a lower one or from any other source. The effect at the next higher level (NHL) is shown in
Table 2. Again, the user can add effects if necessary.

Table 2. Effects due to Incorrect Input at NHL.

Detection and Compensation NHL Effect

None Crash

Detection only Stop

Detection and re-try Delayed output

Detection and default value Degraded output

Can call alternate method None

At the system level there may also be native failure modes for which failure effects are assigned as at the
local level. Failure modes that originated at NHL are translated at the system level in accordance with
Table 2. Failure modes that were detected at NHL cause system level failure effects as shown in Table 3.

Table 3. System Level Effects due to NHL Detected Failure Modes

System Level Protection NHL crash NHL stop NHL delayed

output
NHL degraded
output

None Crash Crash Crash Degraded output

Detection only Crash Stop Stop Degraded output

Detection and re-try Crash Stop Degraded output Degraded output

Detection and default value Degraded
output

Degraded
output

Degraded output Degraded output

Can call alternate method None None None None

6. Detection, Compensation and Remarks

Hardware failure modes, such as an open resistor or a shorted capacitor usually disable the
affected function permanently. Software failures, particularly in well-tested programs, are frequently
transitory. The program response to typical inputs and computer states is tested many times during
development and had been found satisfactory; thus the failure is likely to be due to unusual events. For
this reason re-try of the affected program segment frequently permits resumption of normal execution.

To facilitate re-try the failure must be detected, and thus insertion of failure detection provisions
is a standard practice in software developed by responsible organizations. The most effective detection
methods are those inserted immediately after an error-prone programming step, such as accepting data,
non-trivial mathematical or logical operations, and formatting output. In many cases the detection is in the

Hecht, An and Hecht 6 Computer-Aided FMEA

form of an assertion “x = A” which, if not true, causes the program to enter an exception handling routine
(the = sign denotes any logical operator and A any suitable expression). Other detection provisions,
typically found in system software (schedulers, operating systems, middleware) protect against incorrect
message passing, exceeding time limits, and anomalous event sequences.

Detection means close to the source of the failure mode are more effective in preventing higher
level effects than those that are more remote because there is a lower probability of contamination of
other processes and because they can invoke the most appropriate exception handling. Our approach is
therefore particularly aimed at identification of assertions. The current mechanism is to let the
programmer tag these, but more automated methods will also be explored. The detection tag permits
automated entry into the detection column and also directs (together with the compensation provisions)
assignment of NHL and system level effects in the above tables.

The software designer is responsible for providing appropria te compensating provisions, some of
which have already been mentioned: roll-back and retry, program restart, use of default values, and
alternate execution paths. At present these parts of the program must be manually tagged, and this will
lead to automatic entry into the Compensation columns in the FMEA worksheet and direct the selection
of the NHL and system level effects.

Entries into the Remarks column also depend on tags to be provided by the analyst for
• Conditions that lead to more severe failure effects in the presence of other anomalies (e.

g. failures of monitoring software that normally causes no effect but very severe effects if
the monitored function fails)

• Effects that can be overcome by automated or manual measures at the system level
• Failure modes for which the higher level effects and their severity must be assessed by

probabilistic methods (by convention, the entries for these reflect the most severe
possibility)

It will have become apparent that the generation of the FMEA, even with the computer support,
requires much insight into the software and system design. It is a purpose and benefit of our approach that
much less FMEA expertise is required, and that software designers and system engineers can therefore
assume a more active role in FMEA generation.

References

1 SAE J 1739: Potential Failure Mode and Effects Analysis in Design (Design FMEA) and Potential Failure Mode

and Effects Analysis in Manufacturing and Assembly Processes (Process FMEA) Reference Manual, SAE,
Warrendale PA, June 2000

2 Reifer, Donald J.,"Software Failure Mode and Effects Analysis", IEEE Transactions on Reliability, vol.28, no.3,
August 79

3 Hall, F. M., Paul, R.A and Snow, W. E., “Hardware/Software FMECA”, Proc. of the 1983 Reliability and
Maintainability Symposium, Orlando, FL, January 1983, pp. 320-327

4 Bowles, J. B. and Chi Wan, “ Software Failure Modes and Effects Analysis for a Small Embedded Control System”, Proc. of
the 2001 Reliability and Maintainability Symposium, Philadelphia PA, January 2001, pp. 1 – 6.

5 Goddard, P. L. “Software FMEA Techniques”, Proc. of the 2000 Reliability and Maintainability Symposium, Los Angeles CA,
January 2000, pp. 118 – 122.

6 Hecht, Herbert and Patrick Crane, "Rare Conditions and their Effect on Software Failures", Proceedings of the
1994 Reliability and Maintainability Symposium, pp. 334 - 337, January 1994

7 Boggs, Wendy and Michael, Mastering UML with Rational Rose, Sybex, 2002
8 Department of Defense, “Procedures for Performing a Failure Modes, Effects and Criticality Analysis”, AMSC

N3074, 24 Nov 1980 (the standard is no longer active but still widely used)
9 Haapanen Pentti and Atte Helminen, “Failure Mode and Effects Analysis of Software-Based Automation

Systems ”, STUK-YTO-TR 190, August 2002

