

Lecture Objectives

 To understand the basic theory and practices of FMECA

2

Agenda

- MIL-STD-1629-A FMEA Generalised FMEA (45%)
- Risk Priority Number FMEA (45%)
- Matrix FMEA (4%)
- SODA FMEA (4%)
- Conclusions (2%)

3

FMEA: The concept (5)

A bottom up approach detailing the causes of failure of components and associated effects, through all indenture levels (subsystems, modules, etc..), to the system level.

9

Approaches to FMEA

• Mil-Std-1629 : **US**

• RPN Methodology : UK.

13

FMEA and other related techniques BEFORE PHA HAZOP Event CCA ETA FMECA FTA 10

Mil-STD-1629 Criticality Analysis

Two attributes:

- 1. The **Severity** of the effect occurring
- 2. The <u>Likelihood</u> of each event in terms of a probabilistic value or class.

1

FMEA Defined

FMEA represents a powerful, documented method for analysts to present in a structured and formalised manner their subjective thinking and experience in terms of

- What might go wrong
- What might cause it to go wrong
- What effects would it have.

11

Severity categories

Category	Description	Characteristics
1	Negligible	No injury or morbidity No damage to system
2	Marginal	Minor injury or morbidity Minor damage to system
3	Critical	Severe injury or morbidity Severe damage to system
4	Catastrophic	Death Loss of system

15

Need for FMEA

- Implementing "DIRTFTETON"
- Dealing with rapidly changing expectations
- . Complying with increased regulation
- Minimising liability claims
- Ensuring efficient use of resources.

12

Likelihood categories

Category	Description	Characteristics
1	Impossible	Physically impossible to occur.
2	Extremely improbable	Probability of occurrence can't be distinguished from zero.
3	Remote	So unlikely, it can be assumed that it will not be experienced.
4	Occasional	Likely to occur during the life of the item.
5	Reasonably probable	Will occur seceral times during the life of the item.
6	Frequent	Likely to occur frequently.

16

FMEA Planning

- Worksheet formats
- Ground rules
- Analysis assumptions
- Identification of lowest indenture level
- Coding
- System description
- Failure definitions

21

Failure Mode and Cause

- A failure mode is the manner in which an item can fail (e.g., broken).
- A failure cause is the cause for a given failure mode (because of corrosion).

22

Failure Effects

- Are the consequences of each failure mode on item operation, function or status.
- Can be described in terms of what the users experience or what would be drawn to their attention.
- Could apply to a number of failure modes and indenture levels.

23

Analysis resolution

- •The depth of the analysis and the level at which it should be started depend on the information and expertise available.
- •This could depend on the state or progress of the design, the complexity of the system, and the type of system.

20

Severity of effects

- •Can only be assessed in terms of potential consequences of the failure on the people who use or manufacture the system.
- Should indicate the worst case scenario and remain the same regardless of associated causes of failure.

24

Occurrence and Detection

The occurrence rating represents an estimate based on available knowledge of the probability of the failure cause occurring.

The detection rating is defined as a factor that reflects how difficult it is to detect a failure mode before the item leaves the factory.

25

Criticality Analysis

- Second stage of FMEA.
- The new information required is the likelihood of each event in terms of a probabilistic value or class.
- The combinations of Severity likelihood classes represent the so called "Criticality Matrix".

29

Mil-Std-1629 A FMEA

MILITARY STANDARD

PROCEDURES FOR PERFORMING A FAILURE MODE, EFFECT AND CRITICALITY ANALYSIS

FMEA advantages

- Simple technique.
- It can identify system failure modes which were not obvious before the analysis.
- Results can be presented in an easy to understand format.
- It considers all possible component and system failure modes individually.
- It can be reversed and used as a diagnostic tool for repair processes.

30

Mil-Std-1629 A FMEA Contents

- 1. Scope
- 2. Referenced documents
- 3. Definitions
- 4. General requirements
- 5. Detail requirements

FMEA disadvantages

- Cannot model redundant or standby equipment adequately.
- Cannot easily represent the effects of multiple failures on the system.
- Can get very complicated and complex.

31

Mil-Std-1629 A: Table headings

- Identification
- Function
- Failure Mode
- Failure Cause
- Failure Mode frequency
- Detection
- Corrective measure
- Severity

28

27

Criticality Analysis (CA)

 Can be used to determine priorities for corrective action and to establish a clear demarcation between acceptable and unacceptable risk.

32

CA: Advantages (1)

- Identifies which items should be given more attention to eliminate the hazard (Fail-safe design, redundancy, damage containment)
- Identifies which items require tighter quality control during manufacturing stages.

33

RA: Examples of Models

- Mil-Std-1629-A
- BS 5760
- Mil-Std-882
- Def-Std. 00-56.
- NER

3

CA: Advantages (2)

- Facilitates the identification of special requirements to be included in specifications for suppliers concerning design, performance, reliability, safety and quality assurance.
- Facilitates the establishment of special procedures, safeguards, protective equipment, monitoring devices and warning devices.

24

Mil-Std-882					
Frequency Hazard Category					,
Qualitative	Quantitative	Catastrophic	Critical	Marginal	Negligible
Frequent	> 10 ⁻¹				
Probable	10 ⁻¹ to 10 ⁻²				
Occasional	10 ⁻² to 10 ⁻³				
Remote	10 ⁻³ to 10 ⁻⁶				
Improbable	>10 ⁻⁶				
					38

The successful application of FMEA depends on

- The level of expertise of the people carrying out the analysis.
- The data available.
- The commitment of Management to implement the recommendations.

35

Mil-Std-882: Categories Frequency Hazard Category					
Qualitative	Quantitative	Catastrophic	Critical	Marginal	Negligible
Frequent	> 10 ⁻¹	1	3	7	13
Probable	10 ⁻¹ to 10 ⁻²			9	16
Occasional	10 ⁻² to 10 ⁻³		6	11	18
Remote	10 ⁻³ to 10 ⁻⁶	8	10	14	19
Improbable	>10 ⁻⁶	12	15	17	20
					ა ყ

FMEA should be a live document

- Specification changes
- Sales feedback
- Design changes
- Process changes
- Quality Control modifications
- Industrial engineering changes.
- New or revised Standards.

36

Def-Stan-00-56					
Frequency Hazard Category					
Qualitative	Quantitative	Catastrophic	Critical	Marginal	Negligible
Frequent	> 10 ⁻²				
Probable	10 ⁻² to 10 ⁻⁴				
Occasional	10 ⁻⁴ to 10 ⁻⁶				
Remote	10 ⁻⁶ to 10 ⁻⁸				
Improbable	10 ⁻⁸ to 10 ⁻¹⁰				
Incredible	10 ⁻¹⁰ to 10 ⁻¹²				
					40

Frequency Hazard				ard Category			
Qualitative	Quantitative	Catastrophic	Catastrophic Critical Marginal Negligible				
Frequent	> 10 ⁻²	А	А	А	В		
Probable	10 ⁻² to 10 ⁻⁴	А		В	С		
Occasional	10 ⁻⁴ to 10 ⁻⁶	А	В	С	С		
Remote	10 ⁻⁶ to 10 ⁻⁸	В	С	С	D		
Improbable	10 ⁻⁸ to 10 ⁻¹⁰	С	С	D	D		
Incredible	10 ⁻¹⁰ to 10 ⁻¹²	С	D	D	D		

The RPN methodology

- Severity rating (S)
- Occurrence rating (O)
 - 1 2 3 4 5 6 7 8 9 10
- Detection rating (D)
 - 1 2 3 4 5 6 7 8 9 10

42

EITB guidelines on Severity

Rating	Severity Description
1	Minor : Would have no noticeable effect on the vehicle or system performance.
2 or 3	Low : Would cause slight customer annoyance but no noticeable deterioration of subsystem or vehicle.
4, 5 or 6	Moderate : Would cause some customer dissatisfaction or noticeable deterioration in subsystem or vehicle.
7 or 8	High: Would engender a high degree of customer dissatisfaction but does not affect vehicle safety.
9	Very high: Would affect safety.
10	Catastrophic: May cause damage to property, serious injury or death.

SMMT guidelines on Severity

Rating	Severity Description
1	Will have no effect.
2 or 3	Would cause slight annoyance but would only have a minor effect.
4 or 5	Moderate severity causing problems on subsequent operations.
6 or 7	High severity causing a high degree of customer annoyance.
8 or 9	A very high severity failure which could affect safety in the long term.
10	A most severe failure which could result in a sudden safety - related failure.

EITB guidelines on Occurrence

Rating	Likelihood of occurrence
1	Remote: Would be unreasonable to expect the failure to occur.
2 or 3	Low : Generally associated with designs similar to previous ones with a relatively low number of failres.
4, 5 or 6	Moderate : Generally associated with designs similar to previous ones without thrown up occasional failures, but not in major proportions.
7 or 8	High: Generally associated with designs similar to previous ones which have traditionally caused problems.
9 or 10	Very high: Near certainty that major failures will occur.

47

SMMT guidelines on Occurrence

Rating	Likelihood of occurrence
1	It is unlikely that this failure will occur.
2, 3 or 4	There is a low probability that this failure will occur.
5 or 6	Some failures are likely but in major proportions.
7, 8 or 9	There is high probability that this failure will occur.
10	This failure is certain to occur in high proportions.

14

EITB guidelines on Detection

Rating	Likelihood of detection
1	Remote: Would be unreasonable to expect such a defect to undetected during inspection, test or assembly.
2 or 3	A low probability that the defect will reach the customer.
4, 5 or 6	There is a moderate probability that the defect will reach the customer.
7 or 8	There is a high probability that the defect will reach the customer.
9 or 10	There is a very high probability that the defect will reach the customer.

NER Factors (Number Estimating the Risk)

Four factors including:

- 1. The <u>possibility of exposure</u> to the risk (0: Impossible to 15: Certain)
- 2. The <u>frequency of exposure</u> to the risk (0.1: Rare to 5: Continuous)
- 3. The <u>number of people at risk</u> (1: one or two people to 12: Fifty or more people)
- 4. The <u>maximum loss</u> (0.1: slight injury to 15: Death).

53

The RPN methodology in practice

General rules

AND / OR

Special rules.

50

NER Categories

0 to 1 : Acceptable risk

 1 to 5
 : Very Low risk (action in 1 year)

 5 to 10
 : Low risk (action in 3 months)

 10 to 50
 : Significant risk (action in 1 month)

 50 to 100
 : High risk (Action in 1 week)

 100 to 500
 : Very High risk (action in 1 day)

 500 to 1000
 : Extremely High risk (Immediate

action)

Over 1000: Unacceptable risk (Emergency).

54

RPN: General rules: Examples

The range of RPN values is divided into classes:

From 1 to 180 : No action necessaryFrom 181 to 342 : Corrective action is advisable

- From 343 to 1000 : Immediate corrective action
- The classification varies from one organisation to another.

51

The Risk Priority Number methodology

RPN: Special rules Examples

- Any <u>one high</u> rating : Immediate corrective action
- Any two medium ratings: Immediate corrective action.

52

The RPN methodology

Risk Priority Number

Design FMEA | Process FMEA

56

RPN FMEA: Step 1 Definition of system including functional and performance requirements. System System Component 1 Component 2 Component 1 Component 2 Component 2 Component 2

Design FMEA (7)

Failure Effect	Failure Cause		Current Occurrenc e	Current Severity
Engine drop	Incorrectly specified material	Stress tested to 100	3	8

Design FMEA (11)

			Corrective Action	Action By
8	3	3x8x3 = 72		Test Department

77

Design FMEA (8)

Failure Cause	Current Control	Current Occurrenc e	Current Severity	Current Detection
Incorrectly specified material	Stress tested to 100	3	8	3

74

Design FMEA (12)

Current Detection	Risk Priority Number	Corrective Action	Action carried out by	Action to be completed by
3		Stress test to 150 and	Test Department	25/01/96

78

Design FMEA (9)

Current Control	Occurrenc e	Severity		Risk Priority Number
Stress tested to	3	8	3	3x8x3 = 72

75

Design FMEA (13)

Risk Priority Number	Corrective Action	Action carried out by	Action to be completed by	Action taken
3x8x3 = 72	Stress test to 150 and report.	Test Department	25/01/96	Stress Test to 150 completed. Satisfactory

79

Design FMEA (10)

Current Occurrenc e	Current Severity	Current Detection	Risk Priority Number	Corrective Action
3	8	3	3x8x3 = 72	Stress test to 150 and

Design FMEA (14)

Corrective Action	Action carried out by	Action to be completed by	Action taken	Revised Occurrenc e
Stress test to 150 and report.	Test Department	25/01/96	Stress Test to 150 completed. Satisfactory	2

80

Process FMEA (5)

Item	Issue No.	Description	Failure Mode
B100	Issue R		Holes out of position

Process FMEA (9)

Current Control	Occurrenc e	Severity	Detection	Risk Priority Number
Inspection by Vernier on frequency	5	7	6	5x7x6 = 210

93

Process FMEA (6)

Failure Mode	Failure Effect	Failure Cause		Current Occurrence
Holes out of position.	Difficult assembly of engine mounting.		Inspection by Vernier on frequency basis.	5

90

Process FMEA (10)

Current Occurrenc e	Current Severity		Risk Priority Number	Corrective Action
5	7	6	5x7x6 = 210	Positive location using special gauge.

QЛ

Process FMEA (7)

Failure	Failure	Current		Current
Effect	Cause	Control		Severity
Difficult assembly of engine mounting.		Inspection by Vernier on frequency	5	7

91

Process FMEA (11)

Current Severity	Current Detection	Risk Priority Number	Corrective Action	Action By	
7	6	5x7x6 = 210	Positive location using special gauge	Production Department	

95

Process FMEA (8)

Failure	Current		Current	Current
Cause	Control		Severity	Detection
Incorrect location in drill fixture	Inspection by Vernier on frequency basis	5	7	6

Process FMEA (12)

Current Detection	Risk Priority Number	Corrective Action	Action carried out by	Action to be completed by
6	5x7x6 = 210	Positive location using special gauge.	Production Department	25/01/96

96

Matrix FMEA: Main advantage

Matrix FMEA can be used as a diagnostic tool

FMEA: Survey results (2)

- There is insufficient time to carry out the analysis properly.
- A large number of practitioners have a poor understanding of the importance of FMEA.
- Practitioners are inadequately or poorly trained.
- There is a lack of senior management commitment to FMEA.

Summary

- Team work and careful planning
- Parts count
- Criticality matrix
- Matrix FMEA
- SOD-A

Matrix FMEA advantages

- FMEA results at each indenture level constitutes a discrete module of data
- and graphical system.

which can be used in other FMEAs. • Matrix FMEA results provide a traceable

- The methodology can be reversed and used for diagnostics.
- Matrix FMEA can also be used for contingency planning, fault isolation and safety and quality analyses.

115

FMEA: Survey results (1)

- The majority of suppliers are using FMEA only because it is a contractual requirement placed on them by the customer.
- FMEA is perceived as difficult, laborious and boring.
- There is a need for improved computerised aids to reduce the effort in preparing and analysing FMEAs.

116