

Integration of Model-Based Diagnosis Techniques into the Product Development Chain

Peter Bunus,

Uptime Solutions AB, Sweden

peter.bunus@uptimeworld.com

"Well HAL, I'm damned if I can find anything wrong with it." "Yes. It's puzzling, isn't it."

-- 2001: A Space Odyssey

Houston We Have a Problem

02 07 55 19	LMP	Okay, Houston
02 07 55 20	CDR	I believe we've had a problem here.
02 07 55 28	CC	This is Houston. Say again, please.
02 07 55 35	CDR	Houston, we've had a problem. We've had a MAIN B BUS UNDERVOLT.
02 07 55 42	CC	Roger. MAIN B UNDERVOLT.
02 07 55 58	CC	Okay, stand by, 13. We're looking at it.
02 07 56 10	LMP	Okay. Right now, Houston, the voltage is - is looking good. And we had a pretty large bang associated with the CAUTION AND WARNING there. And as I recall, MAIN B was the one that had an amp spike on it once before.
02 07 56 40	CC	Roger, Fred.
02 07 56 54	LMP	In the interim here, we're starting to go ahead

02 07 56 54	IMP	In the interim here, we're starting to go ahead and button up the tunnel again.
02 07 57 01	cc	Roger,
02 07 57 04	LMP	Yes. That jolt must have rocked the sensor on see now - 0_2 QUANTITY 2. It - was oscillating down around 20 to 60 percent. Now it's full-scale high again.
02 07 57 22	cc	Roger.

Traditional Design Flow

- Traditional Design Flow
 - Characterized by a sequential flow, iteration is expensive
 - Manual code development, paper intensive, error prone, resistant to change
 - Projects get complex to manage by the end of integration process

Model-Based Design

Model-Based Design Flow

- Build explicit architectures of predictable systems
- Go seamlessly from abstraction to realizations
- Capitalize on V& activities early and all along the development flow

Model Driven Development Process

Value of Failure Mode Modeling for the Life Cycle

- Adds value throughout the development cycle
- Executable specification fosters collaboration between departments and organizations
- Provides the missing link between development & service community

ARP 4761 Safety Assessment Diagram

ARP 4761 Safety Assessment Diagram

Requirements Identification Stage

Models for Quality Insurance

Item Design Implementation Stage

Electronic Elevator Control System

Diagnostics Results – Decision Trees

Item & System Verification Stage

The FMEA Process

Tutorial Demo Model and Generated FMEA

Vehicle Verification Stage

The Diagnosis Problem

Traditional Service Process

Workshop Off-Board Diagnostics Scenario

Tutorial Demo Exterior Lighting

Model-Based Diagnosis Principles

Diagnostic Rules

- Generated by systematic computation
- Contains virtually all
- Root cause <=> symptom relationships
- Applicable in Real Time systems
- Finds single & multiple faults
- Interfaces exist to various embedded systems exist

Resources Diagnostic Engine:

- 16 Bit µ-processor, 25 Mhz
- 118 KB Flash memory

Resources Diagnostic Application:

- Compiled model < 2KB
- Some 20 msec time

Diagnostics Rules

- Diagnostic Rules (SD) applied On Board the Mercedes-Benz SL-Class
- Monitors some 1500 EE parts (Body)
- Reduced effort in service bay

- Usually based on self diagnosis (BITE)
- Reduces # of candidates greatly
 - Green bars: # of candidates per DTC system (BITE)
 - Purple bars: # of candidates per System Diagnosis (SD)
- Identifies true candidates

- RODON Real Time DR Engine tested successfully in a test bench environment
- Met all resource & diagnostic requirements

The different views/stages in System Design

Conclusions

- Today's challenges and trends:
 - Complexity
 - Variants
 - Info drop
- End-to-end solution from Design to Service Stations
- Model Based Design
 - Ranges from Manual authoring to Complete Model Based
 - Easy entry
 - Still Extendable
 - Future proof
 - Always with full integration of information

