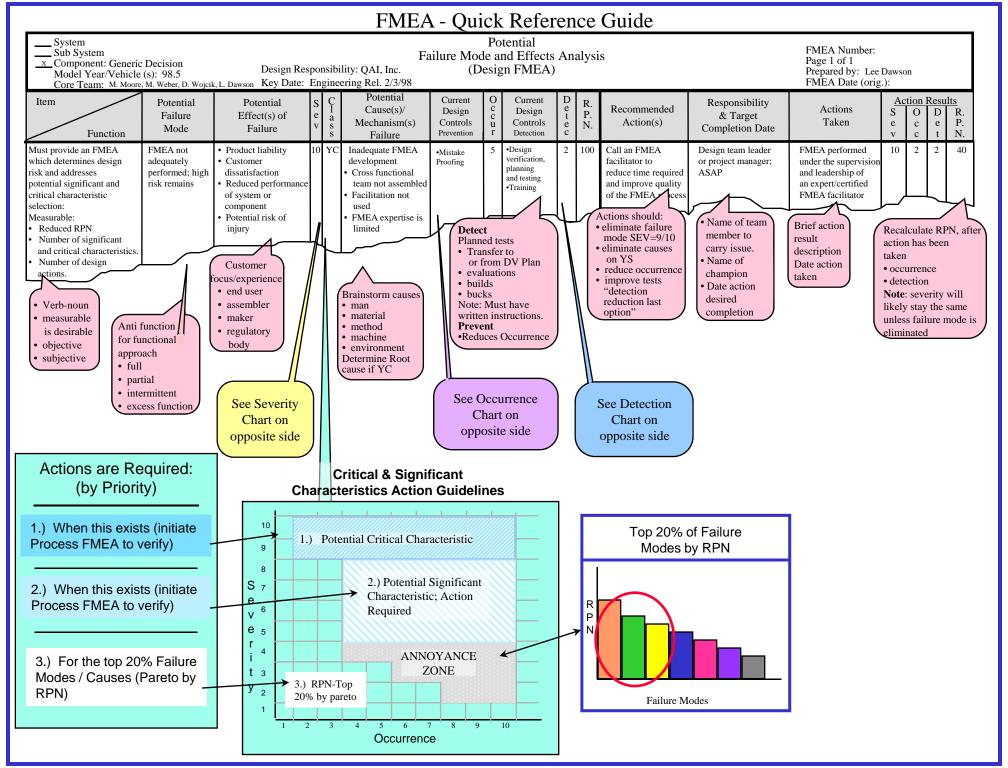
Severity, Occurrence, and Detection Criteria for Design FMEA

Effect	SEVERITY EVALUATION CRITERIA CRITERIA: Severity of Effect on Product (Customer Effect)	Rank
Failure to meet safety and/or	Potential failure mode affects safe vehicle operation and/or involves noncompliance with government regulation without warning.	
Regulatory Requirements	Potential failure mode affects safe vehicle operation and/or involves noncompliance with government regulation with warning.	9
Loss or Degradation of	Loss of primary function (vehicle inoperable, does not affect safe vehicle operation).	
Primary Function	Degradation of primary function (vehicle operable, but at a reduced level of performance).	7
Loss or Degradation of	Loss of secondary function (vehicle operable, but comfort / convenience functions inoperable).	6
Secondary Function	Degradation of secondary function (vehicle operable, but comfort/convenience functions at reduced level of performance).	5
	Appearance or Audible noise, vehicle operable, item does not conform and noticed by most customers (>75%).	4
Annoyance	Appearance or Audible noise, vehicle operable, item does not conform and noticed by many customers (50%).	3
	Appearance or Audible noise, vehicle operable, item does not conform and noticed by discriminating customers (< 25%).	2
No effect	No effect No discernible effect.	

Likelihood of Failure	Criteria: Occurrence of Cause – DFMEA (Design life/reliability of item/vehicle) Cause – DFMEA (Incidents per items/vehicles)		Ppk	Rank
Very High	New technology/new design with no history.	≥100 per thousand ≥1 in 10	< 0.55	10
High	Failure is inevitable with new design, new application, or change in duty cycle/ operating conditions.	50 per thousand 1 in 20	≥0.55	9
	Failure is likely with new design, new application, or change in duty cycle/ operating conditions. 20 per thousand 1 in 50		≥0.78	8
	Failure is uncertain with new design, new application, or change in duty cycle/ operating conditions.	10 per thousand 1 in 100	≥0.86	7
Moderate	Frequent failures associated with similar designs or in design simulation and testing.	2 per thousand 1 in 500	≥0.94	6
	Occasional failures associated with similar designs or in design simulation and testing.	.5 per thousand 1 in 2,000	≥1.00	5
	Isolated failures associated with similar designs or in design simulation and testing.	.1 per thousand 1 in 10,000	≥1.10	4
Low	Only isolated failures associated with almost identical design or in design simulation and testing.	.01 per thousand 1 in 100,000	≥1.20	3
	No observed failures associated with almost identical design or in design simulation and testing.	≤.001 per thousand 1 in 1,000,000	≥1.30	2
Very Low	Failure is eliminated through preventative control.	Failure is eliminated through preventative control	≥1.67	1

Opportunity for Detection	Criteria: Likelihood of Detection by Design Control	Rank	Likelihood of Detection
No detection opportunity	No current design control; Cannot detect or is not analyzed.	10	Almost Impossible
Not Likely to detect at any stage	Design analysis/detection controls have a weak detection capability; Virtual Analysis (e.g.,CAE,FEA, etc) is <u>not</u> <u>correlated</u> to expected actual operating conditions	9	Very Remote
Post Design Freeze and prior to launch	Product verification/validation after design freeze and prior to launch with <u>pass/fail</u> testing (Subsystem or system testing with acceptance criteria such as ride and handling, shipping, evaluation, etc.).	8	Remote
	Product verification/validation after design freeze and prior to launch with test to failure testing (Subsystem or system testing until failure occurs, testing of system interactions, etc.).	7	Very Low
	Product verification/validation after design freeze and prior to launch with <u>degradation</u> testing (Subsystem or system testing after durability test, e.g., function check).	6	Low
Prior to Design Freeze	Product validation (reliability testing, development or validation tests) prior to design freeze using pass/fail testing (e.g., acceptance criteria for performance, function checks, etc.).	5	Moderate
	Product validation (reliability testing, development or validation tests) prior to design freeze using test to failure (e.g., until leaks, yields, cracks, etc.).	4	Moderately High
	Product validation (reliability testing, development or validation tests) prior to design freeze using <u>degradation</u> testing (e.g., data trends, before/after values, etc.).	3	High
Virtual Analysis - Correlated	Design and analysis/detection controls have a strong detection capability. Virtual analysis (e.g., CAE, FEA, etc.) is highly correlated with actual or extended operating conditions prior to design freeze.	2	Very High
Detection not applicable; Failure Prevention	Failure cause or failure mode can not occur because it is fully prevented through design solutions (e.g., proven design standard, best practice or common material, etc.).	1	Almost Certain


RPN THRESHOLD

There is no threshold value for RPNs. In other words, there is no value above which it is mandatory to take a Recommended Action or below which the team is automatically excused from an action.

*Note: Zero (0) rankings for Severity, Occurrence or Detection are <u>not</u> allowed

(248) 280 - 4800 Rev. Date - 8/2008 www.quality-one.com

