RISK ANALYSIS METHODS IN PROCESSING INDUSTRY

A SWISS - GERMAN SURVEY

Dr.-Ing. Ralf Mock Chair of Safety Technology Swiss Federal Institute of Technology Zurich Switzerland

Dr.-Ing. Jens van Mahnen Bergische Universität-Gesamthochschule Wuppertal Fachbereich Sicherheitstechnik Germany

RISK ANALYSIS METHODS IN PROCESSING INDUSTRY

Project Goals

- Overview on the disposition of RA-methods in the chemical processing industry of Switzerland and Germany
- Optimisation of future research projects
- Keeping courses up to date

Procedure

Questionnaire:

- Mailed to 1612 companies (976 CH; 636 D)
- Response from 237 companies (174 CH, 63 D)

RISK ANALYSIS METHODS IN PROCESSING INDUSTRY

A SWISS - GERMAN SURVEY

Content

- Project Goals and Procedure
- •Questionnaire: Basic Data
- •Cluster Analysis
- Disposition of Risk Analysis Methods
- •Judgement of Methods
- Conclusions

Questionnaire: Basic Data

Companies According to Country and Number of Employees

Participation

- 179 companies (129 CH; 50 D)
 - CH: mostly small companies
 - D: mostly medium sized companies

Questionnaire: Basic Data

Companies Applying Risk Analysis
According to Country and Number of Employees

Risk Analysis

112 companies (74 CH; 38 D)

Conclusion

• Both histograms show expected subdivisions

Goals of Applying Risk Analysis in Chemical Industry

Legend of specified goals

- 1. Hazard identification
- Fulfilment of legal demands
 Optimisation of safety and protection installations
- 4. Fulfilment of "Ordinance for the Protection Against Major Accidents"
- 5. Product safety
- 6. Certifications according to ISO 9001 or 140017. Communication with authorities
- 8. Ouantitative risk assessment
- 9. Optimisation of systems-/products
- 10. Optimisation of maintenance
- 11. Reliability analysis

Results

Specified Goals

- Swiss and German companies of same size are similar in their goal ratings
- Swiss companies concentrate on "1. Hazard identification"
- 3. Swiss companies name more often "4. Ordinance .." than German companies4. For medium Swiss companies
- "5. Product safety" is more important

Cluster Analysis

(Multivariate Statistics)

The Cluster Analysis is a tool to identify patterns (cluster) in a set of objects

- Objects within the same cluster should be as similar as possible
- Objects within different classes should differ as much as possible

Cluster Analysis

The goals of risk analyses can be grouped.

CH

Cluster 1: "Handling with Hazards"

- •Hazard identification
- •Fulfilment of "Ordinance for the Protection ..."
- •Optimisation of safety/protection installations
- •Fulfilment of legal demands

Cluster 2: "Engineering"

- Optimisation of system-/products
- •Quantitative risk assessment
- •Reliability analysis
- •Optimisation of maintenance
- •Fulfilment of insurance demands
- •Certifications according to ISO 9001/14001
- •Communication with authorities

Cluster 3: "others"

Product safety

Cluster 1: "Handling with Hazards"

- •Hazard identification
- •Optimisation of safety/protection installations
- •Fulfilment of legal demands
- •Communication with authorities

Cluster 2: "Engineering"

- Optimisation of system-/products
- •Quantitative risk assessment
- •Reliability analysis
- •Optimisation of maintenance
- Product safety
- •Fulfilment of insurance demands
- Certifications according to ISO 9001/14001

Cluster 3: "others"

•Fulfilment of "Ordinance for the protection ..."

Judgement of Methods

Legend: "Method is ..."

HBAR: easy (difficult) manageable

ATIEFE: (not)flexible in respect of analysis

depth/scope

AGEBIET: (not)flexible in respect of areas of

application

MSTRUK: methodically (un)structured

RESS: (not) sparing resources

SUBJ: (not) depending on experts

subjectivity

RECHN: well (badly) practicable by

computers

Selected Results

Manageability (HBAR)

•HAZOP: more difficult than FMEA

Analysis depth and scope (ATIEFE)

•Good rating for ZHA

Area of Application (AGEBIET)

•ZHA: good appraisal

Resources (RESS)

HAZOP, FMEA need many resources

Methodical structure (MSTRUK)

ZHA: good rating

Conclusion

The propertis of "Method is ..." of ZHA fit well to requirements in chemical industry.

Conclusions

In General

- Insight in current approaches and problems of RA-methods
- A wide variety of methods is used
- Most methods used are methodically simple

Major Goals of RA-Methods

- Hazard identification
- Fulfilment of legal requirements
- Optimisation of safety and protection installations
- Fulfilment of "Ordinance for Protection ..."

Cluster Analysis

- CH: Combined area of "hazard identification" and "Ordinance for Protection..."
- D: The application of this ordinance is a working area of its own

Partners in Risk Analysis

- CH: Engineering companies
- D: Academic institutions

Difference to "Academic" Positions

"RA-methods take well into account the inclusion of dependencies and human actions"

Final Impression

Companies are "satisfied customers" of "their" RA-methods

Research and development in this area is not regarded as urging

Judgement of Methods

Legend: Method requires

DBASIS: a big (low) data and knowledge base

SYSKN: few (much) knowledge of systems from an analyst

XWARE: few (much) soft/hardware

Judgement of Methods

Legend: Method supports

GSUCHE: the hazard identification (does not)

TRAGW: the consequence assessment sufficiently (insufficiently) the frequency assessment sufficiently (insufficiently)

SZEN: the determination of scenarios (does not)
SZUST: the consideration of system states (does not)
ABHKT: the inclusion of dependent failures (does not)
FH: the inclusion of human mis-actions (does not)
EVA: the inclusion of external events.. (does not)

LIVRA: an easy up dating... (does not)

DARST: an easy representation of results (does not)

BEURT: the judgement of results (does not)

INDISZ: the interdisciplinary team work of different departments (does not)

Cluster Analysis

Legend

ISO: Certifications according to ISO 9001 or 14001

Kom: Communication with authorities

ZA: Reliability analysis

SiEin: Optimisation of safety and protection installations

ProdSi: Product safety

QRA: Quantitative risk assessment

SyPrOpt:Optimisation of system-/products

GefErk: Hazard identification

Versich: Fulfilment of insurance demands

Inst: Optimisation of maintenance

Gesetz: Fulfilment of legal demands

StFV: Fulfilment of "Ordinance for the

Protection Against Major Accidents"